Update README.md
Browse files
README.md
CHANGED
|
@@ -1,205 +1,193 @@
|
|
| 1 |
-
|
| 2 |
-
library_name: transformers
|
| 3 |
-
tags: []
|
| 4 |
-
widget:
|
| 5 |
-
- text: >-
|
| 6 |
-
Hi Im pip_bot , I can document code , write sql and do other etl related work. All you have to give me are a few examples.
|
| 7 |
-
example_title: example
|
| 8 |
-
---
|
| 9 |
|
| 10 |
-
|
| 11 |
|
| 12 |
-
|
| 13 |
|
|
|
|
| 14 |
|
|
|
|
|
|
|
|
|
|
| 15 |
|
| 16 |
-
##
|
| 17 |
|
| 18 |
-
|
| 19 |
-
|
| 20 |
-
<!-- Provide a longer summary of what this model is. -->
|
| 21 |
-
|
| 22 |
-
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
|
| 23 |
-
|
| 24 |
-
- **Developed by:** [More Information Needed]
|
| 25 |
-
- **Funded by [optional]:** [More Information Needed]
|
| 26 |
-
- **Shared by [optional]:** [More Information Needed]
|
| 27 |
-
- **Model type:** [More Information Needed]
|
| 28 |
-
- **Language(s) (NLP):** [More Information Needed]
|
| 29 |
-
- **License:** [More Information Needed]
|
| 30 |
-
- **Finetuned from model [optional]:** [More Information Needed]
|
| 31 |
-
|
| 32 |
-
### Model Sources [optional]
|
| 33 |
-
|
| 34 |
-
<!-- Provide the basic links for the model. -->
|
| 35 |
-
|
| 36 |
-
- **Repository:** [More Information Needed]
|
| 37 |
-
- **Paper [optional]:** [More Information Needed]
|
| 38 |
-
- **Demo [optional]:** [More Information Needed]
|
| 39 |
-
|
| 40 |
-
## Uses
|
| 41 |
-
|
| 42 |
-
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
|
| 43 |
-
|
| 44 |
-
### Direct Use
|
| 45 |
-
|
| 46 |
-
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
|
| 47 |
-
|
| 48 |
-
[More Information Needed]
|
| 49 |
-
|
| 50 |
-
### Downstream Use [optional]
|
| 51 |
-
|
| 52 |
-
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
|
| 53 |
-
|
| 54 |
-
[More Information Needed]
|
| 55 |
-
|
| 56 |
-
### Out-of-Scope Use
|
| 57 |
-
|
| 58 |
-
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
|
| 59 |
-
|
| 60 |
-
[More Information Needed]
|
| 61 |
-
|
| 62 |
-
## Bias, Risks, and Limitations
|
| 63 |
-
|
| 64 |
-
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
|
| 65 |
-
|
| 66 |
-
[More Information Needed]
|
| 67 |
-
|
| 68 |
-
### Recommendations
|
| 69 |
-
|
| 70 |
-
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
|
| 71 |
-
|
| 72 |
-
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
|
| 73 |
-
|
| 74 |
-
## How to Get Started with the Model
|
| 75 |
-
|
| 76 |
-
Use the code below to get started with the model.
|
| 77 |
-
|
| 78 |
-
[More Information Needed]
|
| 79 |
-
|
| 80 |
-
## Training Details
|
| 81 |
-
|
| 82 |
-
### Training Data
|
| 83 |
-
|
| 84 |
-
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
|
| 85 |
-
|
| 86 |
-
[More Information Needed]
|
| 87 |
-
|
| 88 |
-
### Training Procedure
|
| 89 |
-
|
| 90 |
-
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
|
| 91 |
-
|
| 92 |
-
#### Preprocessing [optional]
|
| 93 |
-
|
| 94 |
-
[More Information Needed]
|
| 95 |
-
|
| 96 |
-
|
| 97 |
-
#### Training Hyperparameters
|
| 98 |
-
|
| 99 |
-
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
|
| 100 |
-
|
| 101 |
-
#### Speeds, Sizes, Times [optional]
|
| 102 |
-
|
| 103 |
-
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
|
| 104 |
-
|
| 105 |
-
[More Information Needed]
|
| 106 |
-
|
| 107 |
-
## Evaluation
|
| 108 |
-
|
| 109 |
-
<!-- This section describes the evaluation protocols and provides the results. -->
|
| 110 |
-
|
| 111 |
-
### Testing Data, Factors & Metrics
|
| 112 |
-
|
| 113 |
-
#### Testing Data
|
| 114 |
-
|
| 115 |
-
<!-- This should link to a Dataset Card if possible. -->
|
| 116 |
-
|
| 117 |
-
[More Information Needed]
|
| 118 |
-
|
| 119 |
-
#### Factors
|
| 120 |
-
|
| 121 |
-
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
|
| 122 |
-
|
| 123 |
-
[More Information Needed]
|
| 124 |
-
|
| 125 |
-
#### Metrics
|
| 126 |
-
|
| 127 |
-
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
|
| 128 |
-
|
| 129 |
-
[More Information Needed]
|
| 130 |
-
|
| 131 |
-
### Results
|
| 132 |
-
|
| 133 |
-
[More Information Needed]
|
| 134 |
-
|
| 135 |
-
#### Summary
|
| 136 |
-
|
| 137 |
-
|
| 138 |
-
|
| 139 |
-
## Model Examination [optional]
|
| 140 |
-
|
| 141 |
-
<!-- Relevant interpretability work for the model goes here -->
|
| 142 |
-
|
| 143 |
-
[More Information Needed]
|
| 144 |
-
|
| 145 |
-
## Environmental Impact
|
| 146 |
-
|
| 147 |
-
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
|
| 148 |
-
|
| 149 |
-
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
|
| 150 |
-
|
| 151 |
-
- **Hardware Type:** [More Information Needed]
|
| 152 |
-
- **Hours used:** [More Information Needed]
|
| 153 |
-
- **Cloud Provider:** [More Information Needed]
|
| 154 |
-
- **Compute Region:** [More Information Needed]
|
| 155 |
-
- **Carbon Emitted:** [More Information Needed]
|
| 156 |
-
|
| 157 |
-
## Technical Specifications [optional]
|
| 158 |
-
|
| 159 |
-
### Model Architecture and Objective
|
| 160 |
-
|
| 161 |
-
[More Information Needed]
|
| 162 |
-
|
| 163 |
-
### Compute Infrastructure
|
| 164 |
-
|
| 165 |
-
[More Information Needed]
|
| 166 |
-
|
| 167 |
-
#### Hardware
|
| 168 |
-
|
| 169 |
-
[More Information Needed]
|
| 170 |
-
|
| 171 |
-
#### Software
|
| 172 |
-
|
| 173 |
-
[More Information Needed]
|
| 174 |
-
|
| 175 |
-
## Citation [optional]
|
| 176 |
-
|
| 177 |
-
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
|
| 178 |
-
|
| 179 |
-
**BibTeX:**
|
| 180 |
-
|
| 181 |
-
[More Information Needed]
|
| 182 |
-
|
| 183 |
-
**APA:**
|
| 184 |
-
|
| 185 |
-
[More Information Needed]
|
| 186 |
-
|
| 187 |
-
## Glossary [optional]
|
| 188 |
-
|
| 189 |
-
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
|
| 190 |
-
|
| 191 |
-
[More Information Needed]
|
| 192 |
-
|
| 193 |
-
## More Information [optional]
|
| 194 |
-
|
| 195 |
-
[More Information Needed]
|
| 196 |
-
|
| 197 |
-
## Model Card Authors [optional]
|
| 198 |
-
|
| 199 |
-
[More Information Needed]
|
| 200 |
-
|
| 201 |
-
## Model Card Contact
|
| 202 |
-
|
| 203 |
-
[More Information Needed]
|
| 204 |
|
|
|
|
| 205 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# pip-code-to-doc
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 2 |
|
| 3 |
+
[pipableAi](https://www.linkedin.com/company/pipable.ai/about/)
|
| 4 |
|
| 5 |
+
[colab_notebook](https://colab.research.google.com/drive/17PyMU_3QN9LROy7x-jmaema0cuLRzBvc?usp=sharing)
|
| 6 |
|
| 7 |
+
## What have we built?
|
| 8 |
|
| 9 |
+
A 1.3 bn code documentation model that outperforms most models on documenting codes and making your in-house libs ready for LLM and RAG pipelines.
|
| 10 |
+
We have also open sourced a [parsing lib](https://github.com/PipableAI/pip-library-parser) for the same, together the lib and model can turn your codebase to functional parse tree ready to be consumed by LLMs to execute complex tasks.
|
| 11 |
+
This is a further trained version of pip-sql-1.3b.
|
| 12 |
|
| 13 |
+
## How we built it?
|
| 14 |
|
| 15 |
+
We used softmax cross entropy and a modified form of policy grad along with Q loss, optimized in an EM set up.
|
| 16 |
+
Loss behaviour in the set up mentioned above -
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 17 |
|
| 18 |
+
## License
|
| 19 |
|
| 20 |
+
The model is open source under apache 2.0. License
|
| 21 |
+
|
| 22 |
+
## Usage
|
| 23 |
+
|
| 24 |
+
|
| 25 |
+
### Library use
|
| 26 |
+
```python
|
| 27 |
+
!pip3 install git+https://github.com/PipableAI/pip-library-parser
|
| 28 |
+
!pip3 install atlassian-python-api
|
| 29 |
+
|
| 30 |
+
|
| 31 |
+
from pip_library_parser import CodeToDocGenerator
|
| 32 |
+
from atlassian import Jira
|
| 33 |
+
|
| 34 |
+
import torch
|
| 35 |
+
torch.set_default_device("cuda")
|
| 36 |
+
|
| 37 |
+
# Instantiate the CodeToDocGenerator
|
| 38 |
+
generator = CodeToDocGenerator()
|
| 39 |
+
|
| 40 |
+
# Generate docstrings for the module's functions and methods
|
| 41 |
+
module = Jira
|
| 42 |
+
module_name = "atlassian.Jira"
|
| 43 |
+
|
| 44 |
+
docs = generator.generate_module_docs(module, module_name)
|
| 45 |
+
print(docs)
|
| 46 |
+
```
|
| 47 |
+
|
| 48 |
+
```python
|
| 49 |
+
from pip_library_parser import CodeToDocGenerator
|
| 50 |
+
|
| 51 |
+
# Instantiate the CodeToDocGenerator
|
| 52 |
+
generator = CodeToDocGenerator()
|
| 53 |
+
|
| 54 |
+
code_snippet = """
|
| 55 |
+
def example_function(x):
|
| 56 |
+
return x * 2
|
| 57 |
+
"""
|
| 58 |
+
|
| 59 |
+
docstring = generator.generate_docstring_from_pip_model(code_snippet)
|
| 60 |
+
print("Generated Docstring:")
|
| 61 |
+
print(docstring)
|
| 62 |
+
```
|
| 63 |
+
|
| 64 |
+
### Installation
|
| 65 |
+
|
| 66 |
+
```bash
|
| 67 |
+
pip install transformers
|
| 68 |
+
```
|
| 69 |
+
|
| 70 |
+
### Prompt
|
| 71 |
+
```python
|
| 72 |
+
prompt = f"""<function_code>{code}</function_code>
|
| 73 |
+
<question>Give one line description of the python code above in natural language.</question>
|
| 74 |
+
<doc>"""
|
| 75 |
+
```
|
| 76 |
+
|
| 77 |
+
### PyTorch
|
| 78 |
+
```python
|
| 79 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
| 80 |
+
device = "cuda"
|
| 81 |
+
model = AutoModelForCausalLM.from_pretrained("PipableAI/pip-code-to-doc-1.3b").to(device)
|
| 82 |
+
tokenizer = AutoTokenizer.from_pretrained("PipableAI/pip-code-to-doc-1.3b")
|
| 83 |
+
prompt = f"""
|
| 84 |
+
<function_code>
|
| 85 |
+
def example_function(x):
|
| 86 |
+
return x * 2
|
| 87 |
+
</function_code>
|
| 88 |
+
<question>Give one line description of the python code above in natural language.</question>
|
| 89 |
+
<doc>"""
|
| 90 |
+
inputs = tokenizer(prompt, return_tensors="pt")
|
| 91 |
+
outputs = model.generate(**inputs, max_new_tokens=300)
|
| 92 |
+
tokenizer.decode(outputs[0], skip_special_tokens=True).split('<doc>')[-1].split('</doc>')[0]
|
| 93 |
+
```
|
| 94 |
+
|
| 95 |
+
|
| 96 |
+
|
| 97 |
+
## Examples
|
| 98 |
+
|
| 99 |
+
### prompt
|
| 100 |
+
```python
|
| 101 |
+
<function_code>
|
| 102 |
+
###########################
|
| 103 |
+
# Generate Analytical Model
|
| 104 |
+
###########################
|
| 105 |
+
##################################################
|
| 106 |
+
# func: get_np_array_transition_probability_matrix
|
| 107 |
+
##################################################
|
| 108 |
+
def get_np_array_transition_probability_matrix(int_num_states, np_array_A_matrix):
|
| 109 |
+
print('np_array_A_matrix:')
|
| 110 |
+
print(np_array_A_matrix)
|
| 111 |
+
#####################################################
|
| 112 |
+
# Perturb the adjacency matrix to avoid singularities
|
| 113 |
+
#####################################################
|
| 114 |
+
np_array_A_matrix += (np.full((int_num_states, int_num_states), float_eps) - (np.identity(int_num_states) * float_eps))
|
| 115 |
+
print('np_array_A_matrix:')
|
| 116 |
+
print(np_array_A_matrix)
|
| 117 |
+
print('np_array_D_matrix:')
|
| 118 |
+
np_array_D_matrix = np.diag(np.sum(np_array_A_matrix, axis=1))
|
| 119 |
+
print(np_array_D_matrix)
|
| 120 |
+
print('np_array_D_matrix_inv:')
|
| 121 |
+
np_array_D_matrix_inv = np.linalg.inv(np_array_D_matrix)
|
| 122 |
+
print(np_array_D_matrix_inv)
|
| 123 |
+
print('\n\n')
|
| 124 |
+
print('np_array_P_matrix:')
|
| 125 |
+
np_array_P_matrix = np.dot(np_array_D_matrix_inv, np_array_A_matrix)
|
| 126 |
+
print(np_array_P_matrix)
|
| 127 |
+
print('np.sum(np_array_P_matrix, axis=1):')
|
| 128 |
+
print(np.sum(np_array_P_matrix, axis=1))
|
| 129 |
+
print('\n\n')
|
| 130 |
+
return np_array_P_matrix
|
| 131 |
+
##################################################
|
| 132 |
+
# func: get_np_array_perron_frobenius_eigen_vector
|
| 133 |
+
##################################################
|
| 134 |
+
def get_np_array_perron_frobenius_matrix(int_num_states, np_array_P_matrix):
|
| 135 |
+
np_array_perron_frobenius_matrix = np.linalg.matrix_power(np_array_P_matrix,1000)
|
| 136 |
+
np_array_perron_frobenius_vector = np_array_perron_frobenius_matrix[0,:]
|
| 137 |
+
print('np_array_perron_frobenius_matrix:')
|
| 138 |
+
print(np_array_perron_frobenius_matrix)
|
| 139 |
+
print('np.sum(np_array_perron_frobenius_matrix, axis=1):')
|
| 140 |
+
print(np.sum(np_array_perron_frobenius_matrix, axis=1))
|
| 141 |
+
print('np.sum(np_array_perron_frobenius_matrix, axis=0):')
|
| 142 |
+
print(np.sum(np_array_perron_frobenius_matrix, axis=0))
|
| 143 |
+
print('np.sum(np_array_perron_frobenius_matrix, axis=0)/int_num_states:')
|
| 144 |
+
print(np.sum(np_array_perron_frobenius_matrix, axis=0)/int_num_states)
|
| 145 |
+
print('np.dot(np_array_perron_frobenius_vector, np_array_P_matrix):')
|
| 146 |
+
print(np.dot(np_array_perron_frobenius_vector, np_array_P_matrix))
|
| 147 |
+
print('np_array_perron_frobenius_vector:')
|
| 148 |
+
print(np_array_perron_frobenius_vector)
|
| 149 |
+
print('\n\n')
|
| 150 |
+
return np_array_perron_frobenius_vector, np_array_perron_frobenius_matrix
|
| 151 |
+
#############################
|
| 152 |
+
# func: get_np_array_Z_matrix
|
| 153 |
+
#############################
|
| 154 |
+
def get_np_array_Z_matrix(int_num_states, np_array_P_matrix, np_array_perron_frobenius_matrix):
|
| 155 |
+
np_array_Z_matrix = np.linalg.inv(np.identity(int_num_states) - np_array_P_matrix + np_array_perron_frobenius_matrix)
|
| 156 |
+
print('np_array_Z_matrix:')
|
| 157 |
+
print(np_array_Z_matrix)
|
| 158 |
+
print('\n\n')
|
| 159 |
+
return(np_array_Z_matrix)
|
| 160 |
+
#############################
|
| 161 |
+
# func: get_np_array_H_matrix
|
| 162 |
+
#############################
|
| 163 |
+
def get_np_array_H_matrix(int_num_states, np_array_Z_matrix, np_array_perron_frobenius_vector):
|
| 164 |
+
np_array_H_matrix = np.zeros([int_num_states, int_num_states])
|
| 165 |
+
for i in range(int_num_states):
|
| 166 |
+
for j in range(int_num_states):
|
| 167 |
+
np_array_H_matrix[i][j] = (np_array_Z_matrix[j][j] - np_array_Z_matrix[i][j])/np_array_perron_frobenius_vector[j]
|
| 168 |
+
print('np_array_H_matrix:')
|
| 169 |
+
print(np_array_H_matrix)
|
| 170 |
+
print('\n\n')
|
| 171 |
+
return np_array_H_matrix
|
| 172 |
+
###########
|
| 173 |
+
# func: run
|
| 174 |
+
###########
|
| 175 |
+
def run(np_array_A_matrix):
|
| 176 |
+
int_num_states = len(np_array_A_matrix)
|
| 177 |
+
np_array_P_matrix = get_np_array_transition_probability_matrix(int_num_states, np_array_A_matrix)
|
| 178 |
+
np_array_perron_frobenius_vector, np_array_perron_frobenius_matrix = get_np_array_perron_frobenius_matrix(int_num_states, np_array_P_matrix)
|
| 179 |
+
np_array_Z_matrix = get_np_array_Z_matrix(int_num_states, np_array_P_matrix, np_array_perron_frobenius_matrix)
|
| 180 |
+
np_array_H_matrix = get_np_array_H_matrix(int_num_states, np_array_Z_matrix, np_array_perron_frobenius_vector)
|
| 181 |
+
return(np_array_H_matrix)
|
| 182 |
+
</function_code>
|
| 183 |
+
<question>Give one line description of the python code above in natural language.</question>
|
| 184 |
+
<doc>
|
| 185 |
+
```
|
| 186 |
+
|
| 187 |
+
### Response
|
| 188 |
+
```txt
|
| 189 |
+
The given python code is a function that calculates the transition probability matrix, P, for a given adjacency matrix A, and then uses these matrices to calculate the Perron-Frobenius eigenvector and its inverse matrix Z, and finally, the H matrix which is the inverse of the Z matrix. The H matrix is then returned as the output of the function. The adjacency matrix A is a square matrix where each element at position (i, j) represents the probability of transitioning from state i to state j. The function first perturbs the adjacency matrix to avoid singularities, then calculates the transition probability matrix P, the Perron-Frobenius eigenvector and its inverse matrix Z, and finally, the H matrix. The H matrix is then returned as the output of the function.
|
| 190 |
+
```
|
| 191 |
+
|
| 192 |
+
### Team
|
| 193 |
+
Avi Kothari, Gyan Ranjan, Pratham Gupta, Ritvik Aryan Kalra, Soham Acharya
|