File size: 5,859 Bytes
7230357 a596058 7230357 a596058 70689dd a596058 70689dd a596058 7230357 fb070a5 7230357 70689dd 7230357 70689dd 7230357 a7ad68a 7230357 70689dd 7230357 70689dd 7230357 70689dd 8aac297 7230357 c677009 a7ad68a 7230357 70689dd 7230357 70689dd c677009 70689dd c677009 8f86f9d 70689dd 7230357 70689dd a596058 70689dd a596058 70689dd 8f86f9d b8f0531 8f86f9d a596058 70689dd a596058 a7ad68a 70689dd a596058 c677009 fb070a5 a596058 a7ad68a a596058 70689dd a596058 9fbe2b8 a596058 c677009 a596058 9fbe2b8 c677009 9fbe2b8 4f8f251 9fbe2b8 a596058 8f86f9d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 |
---
language:
- en
license: apache-2.0
library_name: transformers
tags:
- python
- java
- cpp
- sql
- function calling
- unit tests
- causalLM
- codeLLAMA modified archi
- document
- code
- code2doc
- instruction_tuned
- basemodel
- pytorch
- docstring
- documentation
- text-generation-inference
metrics:
- accuracy
pipeline_tag: text-generation
widget:
- text: '<example_response>--code:def function_divide2(x): return x / 2--question:Document the code--doc:Description:This function takes a number and divides it by 2.Parameters:- x (numeric): The input value to be divided by 2.Returns:- float: The result of x divided by 2.Example:To call the function, use the following code:function_divide2(1.0)</example_response><function_code>def _plot_bounding_polygon(polygons_coordinates, output_html_path=bounding_polygon_map.html):map_center = [sum([coord[0]for polygon_coords in polygons_coordinatesfor coord in polygon_coords])/ sum([len(polygon_coords) for polygon_coords in polygons_coordinates]),sum([coord[1]for polygon_coords in polygons_coordinatesfor coord in polygon_coords])/ sum([len(polygon_coords) for polygon_coords in polygons_coordinates]),]my_map = folium.Map(location=map_center, zoom_start=12)for polygon_coords in polygons_coordinates:folium.Polygon(locations=polygon_coords,color=blue,fill=True,fill_color=blue,fill_opacity=0.2,).add_to(my_map)marker_cluster = MarkerCluster().add_to(my_map)for polygon_coords in polygons_coordinates:for coord in polygon_coords:folium.Marker(location=[coord[0], coord[1]], popup=fCoordinates: {coord}).add_to(marker_cluster)draw = Draw(export=True)draw.add_to(my_map)my_map.save(output_html_path)return output_html_path</function_code><question>Document the python code above giving function description ,parameters and return type and example how to call the function</question><doc>'
example_title: example
---
# pip-code-bandit
[pipableAi](https://www.pipable.ai/)
[colab_notebook](https://colab.research.google.com/drive/10av3SxFf0Psx_IkmZbcUhiVznStV5pVS?usp=sharing)
[pipflow](https://github.com/PipableAI/pipflow)
[linkedin_post]()
[reddit_post]()
## Objective

Given a goal and tools, can AI intelligently use the tools to reach the goal?
What if it has a meagre 1.3b params/neurons akin to that of an owl? Can it follow instructions and plan to reach a goal?
Apparently it can!
Releasing `pip-code-bandit` and `pipflow`
-- a model and a library to manage and run goal oriented agentic system.
## Model attributes
```javascript
-- number of params ~ 1.3b [2.9 Gb GPU memory footprint]
-- sequence length ~ 16.3k [Can go higher but will show performance degradation]
-- license - apache 2.0
-- instruction following , RL tuned.
-- tasks:
1. complex planning(plan) of sequential function calls | a list of callables and goal
2. corrected plan | feedback instructions with error
3. function calling | doc or code and goal
4. code generation | plan and goal
5. code generation | goal
6. doc generation | code
7. code generation | doc
8. file parsed to json | any raw data
9. sql generation | schema, question, instructions and examples
```
## How we built it?
We used a simulator to simulate environments where the model could play games to achieve goals, given a set of actions available to it.
All the model could do was find the right action and config to incur positive reward.
The reward policy is around the concept of model going to a stable state of zero net sum reward for both good and bad behaviour.
In this set up the model, which was pre trained on code , function documentation and similar OS datasets ,was RL tuned for instruction following and reliability.
## License
```bash
complete open sourced - apache 2.0. License
```
## Usage
### NOTE:
If you wish to try this model without utilizing your GPU, we have hosted the model on our end. To execute the library using the hosted model, initialize the generator as shown below:
```bash
pip3 install git+https://github.com/PipableAI/pipflow.git
```
```python
from pipflow import PipFlow
generator = PipFlow()
```
We have hosted the model at https://playground.pipable.ai/infer. Hence, one can also make a POST request to this endpoint with the following payload:
```json
{
"model_name": "PipableAI/pip-code-bandit",
"prompt": "prompt",
"max_new_tokens": "400"
}
```
```bash
curl -X 'POST' \
'https://playground.pipable.ai/infer' \
-H 'accept: application/json' \
-H 'Content-Type: application/x-www-form-urlencoded' \
-d 'model_name=PipableAI%2Fpip-code-bandit&prompt="YOUR PROMPT"&max_new_tokens=400'
```
Alternatively, you can directly access UI endpoint at https://playground.pipable.ai/docs#/default/infer_infer_post.
### Library use
For directly using the capabilities of model without putting extra efforts on schems and prompts try to use [pipflow](https://github.com/PipableAI/pipflow).
For detailed usage refer to the [colab_notebook](https://colab.research.google.com/drive/10av3SxFf0Psx_IkmZbcUhiVznStV5pVS?usp=sharing)
### Model Use
```bash
pip install transformers accelerate torch
```
```python
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer
from accelerate import Accelerator
model =AutoModelForCausalLM.from_pretrained("PipableAI/pip-code-bandit",torch_dtype=torch.bfloat16,device_map="auto")
tokenizer = tokenizer = AutoTokenizer.from_pretrained("PipableAI/pip-code-bandit")
inputs = tokenizer(prompt, return_tensors="pt").to("cuda")
outputs = model.generate(**inputs, max_new_tokens=new_tokens)
out = (
tokenizer.decode(outputs[0][inputs.input_ids.shape[-1]:], skip_special_tokens=True)
)
```
### Prompt
### Team
```doc
Avi Kothari, Gyan Ranjan, Pratham Gupta, Ritvik Aryan Kalra, Soham Acharya
``` |