File size: 5,859 Bytes
7230357
a596058
 
 
7230357
a596058
 
 
 
 
 
 
 
70689dd
 
 
 
a596058
 
 
 
 
 
 
 
 
 
70689dd
a596058
7230357
fb070a5
7230357
70689dd
7230357
70689dd
7230357
a7ad68a
7230357
70689dd
7230357
70689dd
7230357
 
70689dd
8aac297
 
 
 
7230357
c677009
 
 
a7ad68a
 
7230357
 
70689dd
7230357
70689dd
 
 
 
c677009
70689dd
c677009
 
 
 
 
 
 
 
 
8f86f9d
70689dd
7230357
 
70689dd
a596058
70689dd
 
 
 
a596058
70689dd
8f86f9d
b8f0531
8f86f9d
a596058
70689dd
a596058
a7ad68a
70689dd
a596058
 
c677009
fb070a5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a596058
 
 
a7ad68a
a596058
70689dd
 
a596058
 
9fbe2b8
a596058
 
c677009
a596058
 
9fbe2b8
c677009
9fbe2b8
 
 
 
 
 
4f8f251
9fbe2b8
 
 
 
 
 
a596058
 
 
 
 
 
8f86f9d
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
---
language:
- en
license: apache-2.0
library_name: transformers
tags:
- python
- java
- cpp
- sql
- function calling
- unit tests
- causalLM
- codeLLAMA modified archi
- document
- code
- code2doc
- instruction_tuned
- basemodel
- pytorch
- docstring
- documentation
- text-generation-inference
metrics:
- accuracy
pipeline_tag: text-generation
widget:
- text: '<example_response>--code:def function_divide2(x): return x / 2--question:Document the code--doc:Description:This function takes a number and divides it by 2.Parameters:- x (numeric): The input value to be divided by 2.Returns:- float: The result of x divided by 2.Example:To call the function, use the following code:function_divide2(1.0)</example_response><function_code>def _plot_bounding_polygon(polygons_coordinates, output_html_path=bounding_polygon_map.html):map_center = [sum([coord[0]for polygon_coords in polygons_coordinatesfor coord in polygon_coords])/ sum([len(polygon_coords) for polygon_coords in polygons_coordinates]),sum([coord[1]for polygon_coords in polygons_coordinatesfor coord in polygon_coords])/ sum([len(polygon_coords) for polygon_coords in polygons_coordinates]),]my_map = folium.Map(location=map_center, zoom_start=12)for polygon_coords in polygons_coordinates:folium.Polygon(locations=polygon_coords,color=blue,fill=True,fill_color=blue,fill_opacity=0.2,).add_to(my_map)marker_cluster = MarkerCluster().add_to(my_map)for polygon_coords in polygons_coordinates:for coord in polygon_coords:folium.Marker(location=[coord[0], coord[1]], popup=fCoordinates: {coord}).add_to(marker_cluster)draw = Draw(export=True)draw.add_to(my_map)my_map.save(output_html_path)return output_html_path</function_code><question>Document the python code above giving function description ,parameters and return type and example how to call the function</question><doc>'
  example_title: example
---
# pip-code-bandit

[pipableAi](https://www.pipable.ai/)

[colab_notebook](https://colab.research.google.com/drive/10av3SxFf0Psx_IkmZbcUhiVznStV5pVS?usp=sharing)

[pipflow](https://github.com/PipableAI/pipflow)

[linkedin_post]()

[reddit_post]()


## Objective


![image/png](https://cdn-uploads.huggingface.co/production/uploads/658d8095a2a6a6e0da8bb8a6/NuTFBTMAsPgFwMxCjdqFv.png)


Given a goal and tools, can AI intelligently use the tools to reach the goal?
What if it has a meagre 1.3b params/neurons akin to that of an owl? Can it follow instructions and plan to reach a goal? 
Apparently it can!
Releasing `pip-code-bandit` and `pipflow` 
-- a model and a library to manage and run goal oriented agentic system.


## Model attributes

```javascript
-- number of params ~ 1.3b [2.9 Gb GPU memory footprint]
-- sequence length ~ 16.3k [Can go higher but will show performance degradation]
-- license - apache 2.0
-- instruction following , RL tuned.
-- tasks:
1. complex planning(plan) of sequential function calls | a list of callables and goal
2. corrected plan | feedback instructions with error
3. function calling | doc or code and goal
4. code generation | plan and goal
5. code generation | goal
6. doc generation | code
7. code generation | doc
8. file parsed to json | any raw data
9. sql generation | schema, question, instructions and examples

```


## How we built it?

We used a simulator to simulate environments where the model could play games to achieve goals, given a set of actions available to it. 
All the model could do was find the right action and config to incur positive reward.
The reward policy is around the concept of model going to a stable state of zero net sum reward for both good and bad behaviour.
In this set up the model, which was pre trained on code , function documentation and similar OS datasets ,was RL tuned for instruction following and reliability. 

## License
```bash
complete open sourced - apache 2.0. License
```

## Usage


### NOTE:


If you wish to try this model without utilizing your GPU, we have hosted the model on our end. To execute the library using the hosted model, initialize the generator as shown below:

```bash
pip3 install git+https://github.com/PipableAI/pipflow.git
```
```python
from pipflow import PipFlow

generator = PipFlow()
```

We have hosted the model at https://playground.pipable.ai/infer. Hence, one can also make a POST request to this endpoint with the following payload:

```json
{
    "model_name": "PipableAI/pip-code-bandit",
    "prompt": "prompt",
    "max_new_tokens": "400"
}
```

```bash
curl -X 'POST' \
  'https://playground.pipable.ai/infer' \
  -H 'accept: application/json' \
  -H 'Content-Type: application/x-www-form-urlencoded' \
  -d 'model_name=PipableAI%2Fpip-code-bandit&prompt="YOUR PROMPT"&max_new_tokens=400'
```

Alternatively, you can directly access UI endpoint at https://playground.pipable.ai/docs#/default/infer_infer_post.



### Library use

For directly using the capabilities of model without putting extra efforts on schems and prompts try to use [pipflow](https://github.com/PipableAI/pipflow).

For detailed usage refer to the [colab_notebook](https://colab.research.google.com/drive/10av3SxFf0Psx_IkmZbcUhiVznStV5pVS?usp=sharing)



### Model Use

```bash
pip install transformers accelerate torch
```

```python
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer
from accelerate import Accelerator
model =AutoModelForCausalLM.from_pretrained("PipableAI/pip-code-bandit",torch_dtype=torch.bfloat16,device_map="auto")
tokenizer = tokenizer = AutoTokenizer.from_pretrained("PipableAI/pip-code-bandit")

inputs = tokenizer(prompt, return_tensors="pt").to("cuda")
outputs = model.generate(**inputs, max_new_tokens=new_tokens)
out = (
    tokenizer.decode(outputs[0][inputs.input_ids.shape[-1]:], skip_special_tokens=True)
)
```


### Prompt




### Team

```doc
Avi Kothari, Gyan Ranjan, Pratham Gupta, Ritvik Aryan Kalra, Soham Acharya
```