Upload readme.md
Browse files
readme.md
ADDED
|
@@ -0,0 +1,166 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# TEMU-VTOFF: Virtual Try-Off & Fashion Understanding Toolkit
|
| 2 |
+
TEMU-VTOFF is a state-of-the-art toolkit for virtual try-off and fashion image understanding. It leverages advanced diffusion models, vision-language models, and semantic segmentation to enable garment transfer, attribute captioning, and mask generation for fashion images.
|
| 3 |
+
<img src="./assets/teaser.png" alt="example">
|
| 4 |
+
## Table of Contents
|
| 5 |
+
|
| 6 |
+
- [Features](#features)
|
| 7 |
+
- [Installation](#installation)
|
| 8 |
+
- [Quick Start](#quick-start)
|
| 9 |
+
- [Core Components](#core-components)
|
| 10 |
+
- [1. Inference Pipeline (`inference.py`)](#1-inference-pipeline-inferencepy)
|
| 11 |
+
- [2. Visual Attribute Captioning (`precompute_utils/captioning_qwen.py`)](#2-visual-attribute-captioning-precompute_utilscaptioning_qwenpy)
|
| 12 |
+
- [3. Clothing Segmentation (`SegCloth.py`)](#3-clothing-segmentation-segclothpy)
|
| 13 |
+
- [Examples](#examples)
|
| 14 |
+
- [Citation](#citation)
|
| 15 |
+
- [License](#license)
|
| 16 |
+
|
| 17 |
+
---
|
| 18 |
+
|
| 19 |
+
## Features
|
| 20 |
+
|
| 21 |
+
- **Virtual Try-On**: Generate realistic try-on images using Stable Diffusion 3-based pipelines.
|
| 22 |
+
- **Visual Attribute Captioning**: Extract fine-grained garment attributes using Qwen-VL.
|
| 23 |
+
- **Clothing Segmentation**: Obtain binary and fine masks for garments using SegFormer.
|
| 24 |
+
- **Dataset Support**: Works with DressCode and VITON-HD datasets.
|
| 25 |
+
|
| 26 |
+
---
|
| 27 |
+
|
| 28 |
+
## Installation
|
| 29 |
+
|
| 30 |
+
1. **Clone the repository:**
|
| 31 |
+
|
| 32 |
+
```bash
|
| 33 |
+
git clone https://github.com/yourusername/TEMU-VTOFF.git
|
| 34 |
+
cd TEMU-VTOFF
|
| 35 |
+
```
|
| 36 |
+
|
| 37 |
+
2. **Install dependencies:**
|
| 38 |
+
|
| 39 |
+
```bash
|
| 40 |
+
pip install -r requirements.txt
|
| 41 |
+
```
|
| 42 |
+
|
| 43 |
+
3. **(Optional) Setup virtual environment:**
|
| 44 |
+
```bash
|
| 45 |
+
python -m venv venv
|
| 46 |
+
source venv/bin/activate # On Windows: venv\Scripts\activate
|
| 47 |
+
```
|
| 48 |
+
|
| 49 |
+
---
|
| 50 |
+
|
| 51 |
+
## Quick Start
|
| 52 |
+
|
| 53 |
+
### 1. Virtual Try-On Inference
|
| 54 |
+
|
| 55 |
+
```bash
|
| 56 |
+
python inference.py \
|
| 57 |
+
--pretrained_model_name_or_path <path/to/model> \
|
| 58 |
+
--pretrained_model_name_or_path_sd3_tryoff <path/to/tryoff/model> \
|
| 59 |
+
--example_image examples/example1.jpg \
|
| 60 |
+
--output_dir outputs \
|
| 61 |
+
--width 768 --height 1024 \
|
| 62 |
+
--guidance_scale 2.0 \
|
| 63 |
+
--num_inference_steps 28 \
|
| 64 |
+
--category upper_body
|
| 65 |
+
```
|
| 66 |
+
|
| 67 |
+
### 2. Visual Attribute Captioning
|
| 68 |
+
|
| 69 |
+
```bash
|
| 70 |
+
python precompute_utils/captioning_qwen.py \
|
| 71 |
+
--pretrained_model_name_or_path Qwen/Qwen2.5-VL-3B-Instruct \
|
| 72 |
+
--image_path examples/example1.jpg \
|
| 73 |
+
--output_path outputs/example1_caption.txt \
|
| 74 |
+
--image_category upper_body
|
| 75 |
+
```
|
| 76 |
+
|
| 77 |
+
### 3. Clothing Segmentation
|
| 78 |
+
|
| 79 |
+
```python
|
| 80 |
+
from PIL import Image
|
| 81 |
+
from SegCloth import segment_clothing
|
| 82 |
+
|
| 83 |
+
img = Image.open("examples/example1.jpg")
|
| 84 |
+
binary_mask, fine_mask = segment_clothing(img, category="upper_body")
|
| 85 |
+
binary_mask.save("outputs/example1_binary_mask.jpg")
|
| 86 |
+
fine_mask.save("outputs/example1_fine_mask.jpg")
|
| 87 |
+
```
|
| 88 |
+
|
| 89 |
+
---
|
| 90 |
+
|
| 91 |
+
## Core Components
|
| 92 |
+
|
| 93 |
+
### 1. Inference Pipeline (`inference.py`)
|
| 94 |
+
|
| 95 |
+
- **Purpose**: Generates virtual try-on images using a Stable Diffusion 3-based pipeline.
|
| 96 |
+
- **How it works**:
|
| 97 |
+
- Loads pretrained models (VAE, transformers, schedulers, encoders).
|
| 98 |
+
- Segments the clothing region using `SegCloth.py`.
|
| 99 |
+
- Generates a descriptive caption for the garment using Qwen-VL (`captioning_qwen.py`).
|
| 100 |
+
- Runs the diffusion pipeline to synthesize a new try-on image.
|
| 101 |
+
- **Key Arguments**:
|
| 102 |
+
- `--pretrained_model_name_or_path`: Path or HuggingFace model ID for the main model.
|
| 103 |
+
- `--pretrained_model_name_or_path_sd3_tryoff`: Path or ID for the try-off transformer.
|
| 104 |
+
- `--example_image`: Input image path.
|
| 105 |
+
- `--output_dir`: Output directory.
|
| 106 |
+
- `--category`: Clothing category (`upper_body`, `lower_body`, `dresses`).
|
| 107 |
+
- `--width`, `--height`: Output image size.
|
| 108 |
+
- `--guidance_scale`, `--num_inference_steps`: Generation parameters.
|
| 109 |
+
|
| 110 |
+
### 2. Visual Attribute Captioning (`precompute_utils/captioning_qwen.py`)
|
| 111 |
+
|
| 112 |
+
- **Purpose**: Generates fine-grained, structured captions for fashion images using Qwen2.5-VL.
|
| 113 |
+
- **How it works**:
|
| 114 |
+
- Loads the Qwen2.5-VL model and processor.
|
| 115 |
+
- For a given image, predicts garment attributes (e.g., type, fit, hem, neckline) in a controlled, structured format.
|
| 116 |
+
- Can process single images or entire datasets (DressCode, VITON-HD).
|
| 117 |
+
- **Key Arguments**:
|
| 118 |
+
- `--pretrained_model_name_or_path`: Path or HuggingFace model ID for Qwen2.5-VL.
|
| 119 |
+
- `--image_path`: Path to a single image (for single-image captioning).
|
| 120 |
+
- `--output_path`: Where to save the generated caption.
|
| 121 |
+
- `--image_category`: Garment category (`upper_body`, `lower_body`, `dresses`).
|
| 122 |
+
- For batch/dataset mode: `--dataset_name`, `--dataset_root`, `--filename`.
|
| 123 |
+
|
| 124 |
+
### 3. Clothing Segmentation (`SegCloth.py`)
|
| 125 |
+
|
| 126 |
+
- **Purpose**: Segments clothing regions in images, producing:
|
| 127 |
+
- A binary mask (black & white) of the garment.
|
| 128 |
+
- A fine mask image where the garment is grayed out.
|
| 129 |
+
- **How it works**:
|
| 130 |
+
- Uses a SegFormer model (`mattmdjaga/segformer_b2_clothes`) via HuggingFace `transformers` pipeline.
|
| 131 |
+
- Supports categories: `upper_body`, `dresses`, `lower_body`.
|
| 132 |
+
- Provides both single-image and batch processing functions.
|
| 133 |
+
- **Usage**:
|
| 134 |
+
- `segment_clothing(img, category)`: Returns `(binary_mask, fine_mask)` for a PIL image.
|
| 135 |
+
- `batch_segment_clothing(img_dir, out_dir)`: Processes all images in a directory.
|
| 136 |
+
|
| 137 |
+
---
|
| 138 |
+
|
| 139 |
+
## Examples
|
| 140 |
+
|
| 141 |
+
See the `examples/` directory for sample images, masks and captions. Example usage scripts are provided for each core component.
|
| 142 |
+
Here is the workflow of this model and a comparison of its results with other models.
|
| 143 |
+
**Workflow
|
| 144 |
+
<img src="./assets/workflow.png" alt="Workflow" />
|
| 145 |
+
**Compair
|
| 146 |
+
<img src="./assets/compair.png" alt="compair" />
|
| 147 |
+
---
|
| 148 |
+
|
| 149 |
+
## Citation
|
| 150 |
+
|
| 151 |
+
If you use TEMU-VTOFF in your research or product, please cite this repository and the relevant models (e.g., Stable Diffusion 3, Qwen2.5-VL, SegFormer).
|
| 152 |
+
|
| 153 |
+
```
|
| 154 |
+
@misc{temu-vtoff,
|
| 155 |
+
author = {Your Name or Organization},
|
| 156 |
+
title = {TEMU-VTOFF: Virtual Try-On & Fashion Understanding Toolkit},
|
| 157 |
+
year = {2024},
|
| 158 |
+
howpublished = {\url{https://github.com/yourusername/TEMU-VTOFF}}
|
| 159 |
+
}
|
| 160 |
+
```
|
| 161 |
+
|
| 162 |
+
---
|
| 163 |
+
|
| 164 |
+
## License
|
| 165 |
+
|
| 166 |
+
This project is licensed under the [LICENSE](LICENSE) provided in the repository. Please check individual model and dataset licenses for additional terms.
|