PentesterPriyanshu commited on
Commit
d05def6
·
verified ·
1 Parent(s): 8e37972

Upload README.md with huggingface_hub

Browse files
Files changed (1) hide show
  1. README.md +72 -0
README.md ADDED
@@ -0,0 +1,72 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ language: en
3
+ license: mit
4
+ tags:
5
+ - pytorch
6
+ - unet
7
+ - image-generation
8
+ - computer-vision
9
+ - conditional-generation
10
+ - polygon-coloring
11
+ library_name: torch
12
+ pipeline_tag: image-to-image
13
+ ---
14
+
15
+ # Colored Polygon UNet
16
+
17
+ ## Model Description
18
+
19
+ This is a conditional UNet model trained to generate colored polygon images. Given a grayscale/outline polygon image and a color specification, the model generates a colored version of the polygon.
20
+
21
+ ### Supported Colors
22
+ - Blue, Cyan, Green, Magenta, Orange, Purple, Red, Yellow
23
+
24
+ ### Model Architecture
25
+ - **Base**: Conditional UNet with color embedding
26
+ - **Input Size**: 128x128 pixels
27
+ - **Color Embedding**: 32 dimensions
28
+ - **Features**: 64 base features
29
+
30
+ ### Training Details
31
+ - **Framework**: PyTorch
32
+ - **Loss Function**: Combined MSE + L1 Loss
33
+ - **Optimizer**: Adam (lr=0.0001)
34
+ - **Batch Size**: 8
35
+ - **Epochs**: 20
36
+
37
+ ## Usage
38
+
39
+ ```python
40
+ import torch
41
+ from huggingface_hub import hf_hub_download
42
+
43
+ # Download model
44
+ model_path = hf_hub_download(
45
+ repo_id="your_username/colored-polygon-unet",
46
+ filename="best_model.pth"
47
+ )
48
+
49
+ # Load checkpoint
50
+ checkpoint = torch.load(model_path, map_location='cpu')
51
+
52
+ # Initialize model (you'll need the model architecture code)
53
+ model = ConditionalUNet(
54
+ in_channels=3,
55
+ out_channels=3,
56
+ features=64,
57
+ num_colors=8,
58
+ color_embed_dim=32
59
+ )
60
+ model.load_state_dict(checkpoint['model_state_dict'])
61
+ model.eval()
62
+ ```
63
+
64
+ ## Performance
65
+ - Trained on Kaggle with GPU acceleration
66
+ - Typical PSNR: 25-35 dB
67
+ - Fast inference: ~0.1s per image
68
+
69
+ ## Limitations
70
+ - Fixed 128x128 input size
71
+ - Limited to 8 predefined colors
72
+ - Works best with simple polygon shapes