Tingquan commited on
Commit
97e9204
·
verified ·
1 Parent(s): e5f3a7b

Upload folder using huggingface_hub

Browse files
Files changed (1) hide show
  1. README.md +161 -0
README.md ADDED
@@ -0,0 +1,161 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: apache-2.0
3
+ ---
4
+
5
+ # ta_PP-OCRv3_mobile_rec
6
+
7
+ ## Introduction
8
+
9
+ ta_PP-OCRv3_mobile_rec is a text line recognition model within the PP-OCRv3_rec series, developed by the PaddleOCR team. The ta_PP-OCRv3_mobile_rec model is an Tamil-specific model trained based on PP-OCRv3_mobile_rec, and it supports Tamil recognition. The key accuracy metrics are as follow:
10
+
11
+ <table>
12
+ <tr>
13
+ <th>Model</th>
14
+ <th>Recognition Avg Accuracy(%)</th>
15
+ <th>GPU Inference Time (ms)<br/>[Normal Mode / High-Performance Mode]</th>
16
+ <th>CPU Inference Time (ms)<br/>[Normal Mode / High-Performance Mode]</th>
17
+ <th>Model Storage Size (M)</th>
18
+ <th>Introduction</th>
19
+ </tr>
20
+ <tr>
21
+ <td>ta_PP-OCRv3_mobile_rec</td>
22
+ <td>76.83</td>
23
+ <td>5.23 / 0.75</td>
24
+ <td>10.13 / 4.30</td>
25
+ <td>8.0 M </td>
26
+ <td>An ultra-lightweight Tamil recognition model trained based on the PP-OCRv3 recognition model, supporting Tamil and numeric character recognition.</td>
27
+ </tr>
28
+
29
+ </table>
30
+
31
+ **Note**: If any character (including punctuation) in a line is incorrect, the entire line is marked as wrong. This ensures higher accuracy in practical applications.
32
+
33
+ ## Quick Start
34
+
35
+ ### Installation
36
+
37
+ 1. PaddlePaddle
38
+
39
+ Please refer to the following commands to install PaddlePaddle using pip:
40
+
41
+ ```bash
42
+ # for CUDA11.8
43
+ python -m pip install paddlepaddle-gpu==3.0.0 -i https://www.paddlepaddle.org.cn/packages/stable/cu118/
44
+
45
+ # for CUDA12.6
46
+ python -m pip install paddlepaddle-gpu==3.0.0 -i https://www.paddlepaddle.org.cn/packages/stable/cu126/
47
+
48
+ # for CPU
49
+ python -m pip install paddlepaddle==3.0.0 -i https://www.paddlepaddle.org.cn/packages/stable/cpu/
50
+ ```
51
+
52
+ For details about PaddlePaddle installation, please refer to the [PaddlePaddle official website](https://www.paddlepaddle.org.cn/en/install/quick).
53
+
54
+ 2. PaddleOCR
55
+
56
+ Install the latest version of the PaddleOCR inference package from PyPI:
57
+
58
+ ```bash
59
+ python -m pip install paddleocr
60
+ ```
61
+
62
+ ### Model Usage
63
+
64
+ You can quickly experience the functionality with a single command:
65
+
66
+ ```bash
67
+ paddleocr text_recognition \
68
+ --model_name ta_PP-OCRv3_mobile_rec \
69
+ -i https://cdn-uploads.huggingface.co/production/uploads/681c1ecd9539bdde5ae1733c/ZfY9A5MSkLc1PjWjBtEDz.png
70
+ ```
71
+
72
+ You can also integrate the model inference of the text recognition module into your project. Before running the following code, please download the sample image to your local machine.
73
+
74
+ ```python
75
+ from paddleocr import TextRecognition
76
+ model = TextRecognition(model_name="ta_PP-OCRv3_mobile_rec")
77
+ output = model.predict(input="ZfY9A5MSkLc1PjWjBtEDz.png", batch_size=1)
78
+ for res in output:
79
+ res.print()
80
+ res.save_to_img(save_path="./output/")
81
+ res.save_to_json(save_path="./output/res.json")
82
+ ```
83
+
84
+ After running, the obtained result is as follows:
85
+
86
+ ```json
87
+ {'res': {'input_path': '/root/.paddlex/predict_input/ZfY9A5MSkLc1PjWjBtEDz.png', 'page_index': None, 'rec_text': 'தமிழ்பலவரிஉைர', 'rec_score': 0.9988247156143188}}
88
+ ```
89
+
90
+ For details about usage command and descriptions of parameters, please refer to the [Document](https://paddlepaddle.github.io/PaddleOCR/latest/en/version3.x/module_usage/text_recognition.html#iii-quick-start).
91
+
92
+ ### Pipeline Usage
93
+
94
+ The ability of a single model is limited. But the pipeline consists of several models can provide more capacity to resolve difficult problems in real-world scenarios.
95
+
96
+ #### PP-OCRv3
97
+
98
+ The general OCR pipeline is used to solve text recognition tasks by extracting text information from images and outputting it in string format. And there are 5 modules in the pipeline:
99
+ * Document Image Orientation Classification Module (Optional)
100
+ * Text Image Unwarping Module (Optional)
101
+ * Text Line Orientation Classification Module (Optional)
102
+ * Text Detection Module
103
+ * Text Recognition Module
104
+
105
+ Run a single command to quickly experience the OCR pipeline:
106
+
107
+ ```bash
108
+ paddleocr ocr -i https://cdn-uploads.huggingface.co/production/uploads/681c1ecd9539bdde5ae1733c/7uts2DTGTsWXcPTJb87JQ.png \
109
+ --text_recognition_model_name ta_PP-OCRv3_mobile_rec \
110
+ --use_doc_orientation_classify False \
111
+ --use_doc_unwarping False \
112
+ --use_textline_orientation True \
113
+ --save_path ./output \
114
+ --device gpu:0
115
+ ```
116
+
117
+ Results are printed to the terminal:
118
+
119
+ ```json
120
+ {'res': {'input_path': '/root/.paddlex/predict_input/7uts2DTGTsWXcPTJb87JQ.png', 'page_index': None, 'model_settings': {'use_doc_preprocessor': True, 'use_textline_orientation': True}, 'doc_preprocessor_res': {'input_path': None, 'page_index': None, 'model_settings': {'use_doc_orientation_classify': False, 'use_doc_unwarping': False}, 'angle': -1}, 'dt_polys': array([[[ 7, 3],
121
+ ...,
122
+ [ 7, 31]],
123
+
124
+ [[ 7, 35],
125
+ ...,
126
+ [ 7, 63]]], dtype=int16), 'text_det_params': {'limit_side_len': 64, 'limit_type': 'min', 'thresh': 0.3, 'max_side_limit': 4000, 'box_thresh': 0.6, 'unclip_ratio': 1.5}, 'text_type': 'general', 'textline_orientation_angles': array([0, 0]), 'text_rec_score_thresh': 0.0, 'rec_texts': ['தமிழ்பல்வரிஉைர', 'ேசாதைன்வழக்தகள்'], 'rec_scores': array([0.97451222, 0.95028651]), 'rec_polys': array([[[ 7, 3],
127
+ ...,
128
+ [ 7, 31]],
129
+
130
+ [[ 7, 35],
131
+ ...,
132
+ [ 7, 63]]], dtype=int16), 'rec_boxes': array([[ 7, ..., 31],
133
+ [ 7, ..., 63]], dtype=int16)}}
134
+ ```
135
+
136
+ The command-line method is for quick experience. For project integration, also only a few codes are needed as well:
137
+
138
+ ```python
139
+ from paddleocr import PaddleOCR
140
+
141
+ ocr = PaddleOCR(
142
+ text_recognition_model_name="ta_PP-OCRv3_mobile_rec",
143
+ use_doc_orientation_classify=False, # Use use_doc_orientation_classify to enable/disable document orientation classification model
144
+ use_doc_unwarping=False, # Use use_doc_unwarping to enable/disable document unwarping module
145
+ use_textline_orientation=True, # Use use_textline_orientation to enable/disable textline orientation classification model
146
+ device="gpu:0", # Use device to specify GPU for model inference
147
+ )
148
+ result = ocr.predict("https://cdn-uploads.huggingface.co/production/uploads/681c1ecd9539bdde5ae1733c/7uts2DTGTsWXcPTJb87JQ.png")
149
+ for res in result:
150
+ res.print()
151
+ res.save_to_img("output")
152
+ res.save_to_json("output")
153
+ ```
154
+
155
+ The default model used in pipeline is `PP-OCRv5_server_rec`, so it is needed that specifing to `ta_PP-OCRv3_mobile_rec` by argument `text_recognition_model_name`. And you can also use the local model file by argument `text_recognition_model_dir`. For details about usage command and descriptions of parameters, please refer to the [Document](https://paddlepaddle.github.io/PaddleOCR/latest/en/version3.x/pipeline_usage/OCR.html#2-quick-start).
156
+
157
+ ## Links
158
+
159
+ [PaddleOCR Repo](https://github.com/paddlepaddle/paddleocr)
160
+
161
+ [PaddleOCR Documentation](https://paddlepaddle.github.io/PaddleOCR/latest/en/index.html)