Upload folder using huggingface_hub
Browse files
README.md
ADDED
|
@@ -0,0 +1,175 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
---
|
| 2 |
+
license: apache-2.0
|
| 3 |
+
---
|
| 4 |
+
|
| 5 |
+
# en_PP-OCRv4_mobile_rec
|
| 6 |
+
|
| 7 |
+
## Introduction
|
| 8 |
+
|
| 9 |
+
en_PP-OCRv4_mobile_rec is a text line recognition model within the PP-OCRv4_rec series, developed by the PaddleOCR team. The en_PP-OCRv4_mobile_rec model is an English-specific model trained based on PP-OCRv4_mobile_rec, and it supports English recognition. The key accuracy metrics are as follow:
|
| 10 |
+
|
| 11 |
+
<table>
|
| 12 |
+
<tr>
|
| 13 |
+
<th>Model</th>
|
| 14 |
+
<th>Recognition Avg Accuracy(%)</th>
|
| 15 |
+
<th>GPU Inference Time (ms)<br/>[Normal Mode / High-Performance Mode]</th>
|
| 16 |
+
<th>CPU Inference Time (ms)<br/>[Normal Mode / High-Performance Mode]</th>
|
| 17 |
+
<th>Model Storage Size (M)</th>
|
| 18 |
+
<th>Introduction</th>
|
| 19 |
+
</tr>
|
| 20 |
+
<tr>
|
| 21 |
+
<td>en_PP-OCRv4_mobile_rec</td>
|
| 22 |
+
<td> 70.39</td>
|
| 23 |
+
<td>4.81 / 0.75</td>
|
| 24 |
+
<td>16.10 / 5.31</td>
|
| 25 |
+
<td>6.8 M</td>
|
| 26 |
+
<td>An ultra-lightweight English recognition model trained based on the PP-OCRv4 recognition model, supporting English and numeric character recognition.</td>
|
| 27 |
+
</tr>
|
| 28 |
+
</table>
|
| 29 |
+
|
| 30 |
+
|
| 31 |
+
|
| 32 |
+
**Note**: If any character (including punctuation) in a line is incorrect, the entire line is marked as wrong. This ensures higher accuracy in practical applications.
|
| 33 |
+
|
| 34 |
+
## Quick Start
|
| 35 |
+
|
| 36 |
+
### Installation
|
| 37 |
+
|
| 38 |
+
1. PaddlePaddle
|
| 39 |
+
|
| 40 |
+
Please refer to the following commands to install PaddlePaddle using pip:
|
| 41 |
+
|
| 42 |
+
```bash
|
| 43 |
+
# for CUDA11.8
|
| 44 |
+
python -m pip install paddlepaddle-gpu==3.0.0 -i https://www.paddlepaddle.org.cn/packages/stable/cu118/
|
| 45 |
+
|
| 46 |
+
# for CUDA12.6
|
| 47 |
+
python -m pip install paddlepaddle-gpu==3.0.0 -i https://www.paddlepaddle.org.cn/packages/stable/cu126/
|
| 48 |
+
|
| 49 |
+
# for CPU
|
| 50 |
+
python -m pip install paddlepaddle==3.0.0 -i https://www.paddlepaddle.org.cn/packages/stable/cpu/
|
| 51 |
+
```
|
| 52 |
+
|
| 53 |
+
For details about PaddlePaddle installation, please refer to the [PaddlePaddle official website](https://www.paddlepaddle.org.cn/en/install/quick).
|
| 54 |
+
|
| 55 |
+
2. PaddleOCR
|
| 56 |
+
|
| 57 |
+
Install the latest version of the PaddleOCR inference package from PyPI:
|
| 58 |
+
|
| 59 |
+
```bash
|
| 60 |
+
python -m pip install paddleocr
|
| 61 |
+
```
|
| 62 |
+
|
| 63 |
+
### Model Usage
|
| 64 |
+
|
| 65 |
+
You can quickly experience the functionality with a single command:
|
| 66 |
+
|
| 67 |
+
```bash
|
| 68 |
+
paddleocr text_recognition \
|
| 69 |
+
--model_name en_PP-OCRv4_mobile_rec \
|
| 70 |
+
-i https://cdn-uploads.huggingface.co/production/uploads/681c1ecd9539bdde5ae1733c/QmaPtftqwOgCtx0AIvU2z.png
|
| 71 |
+
```
|
| 72 |
+
|
| 73 |
+
You can also integrate the model inference of the text recognition module into your project. Before running the following code, please download the sample image to your local machine.
|
| 74 |
+
|
| 75 |
+
```python
|
| 76 |
+
from paddleocr import TextRecognition
|
| 77 |
+
model = TextRecognition(model_name="en_PP-OCRv4_mobile_rec")
|
| 78 |
+
output = model.predict(input="QmaPtftqwOgCtx0AIvU2z.png", batch_size=1)
|
| 79 |
+
for res in output:
|
| 80 |
+
res.print()
|
| 81 |
+
res.save_to_img(save_path="./output/")
|
| 82 |
+
res.save_to_json(save_path="./output/res.json")
|
| 83 |
+
```
|
| 84 |
+
|
| 85 |
+
After running, the obtained result is as follows:
|
| 86 |
+
|
| 87 |
+
```json
|
| 88 |
+
{'res': {'input_path': '/root/.paddlex/predict_input/QmaPtftqwOgCtx0AIvU2z.png', 'page_index': None, 'rec_text': 'the number of model parameters and FLOPs get larger, it', 'rec_score': 0.9936854243278503}}
|
| 89 |
+
```
|
| 90 |
+
|
| 91 |
+
The visualized image is as follows:
|
| 92 |
+
|
| 93 |
+

|
| 94 |
+
|
| 95 |
+
For details about usage command and descriptions of parameters, please refer to the [Document](https://paddlepaddle.github.io/PaddleOCR/latest/en/version3.x/module_usage/text_recognition.html#iii-quick-start).
|
| 96 |
+
|
| 97 |
+
### Pipeline Usage
|
| 98 |
+
|
| 99 |
+
The ability of a single model is limited. But the pipeline consists of several models can provide more capacity to resolve difficult problems in real-world scenarios.
|
| 100 |
+
|
| 101 |
+
#### PP-OCRv4
|
| 102 |
+
|
| 103 |
+
The general OCR pipeline is used to solve text recognition tasks by extracting text information from images and outputting it in string format. And there are 5 modules in the pipeline:
|
| 104 |
+
* Document Image Orientation Classification Module (Optional)
|
| 105 |
+
* Text Image Unwarping Module (Optional)
|
| 106 |
+
* Text Line Orientation Classification Module (Optional)
|
| 107 |
+
* Text Detection Module
|
| 108 |
+
* Text Recognition Module
|
| 109 |
+
|
| 110 |
+
Run a single command to quickly experience the OCR pipeline:
|
| 111 |
+
|
| 112 |
+
```bash
|
| 113 |
+
paddleocr ocr -i https://cdn-uploads.huggingface.co/production/uploads/681c1ecd9539bdde5ae1733c/c3hSldnYVQXp48T5V0Ze4.png \
|
| 114 |
+
--text_recognition_model_name en_PP-OCRv4_mobile_rec \
|
| 115 |
+
--use_doc_orientation_classify False \
|
| 116 |
+
--use_doc_unwarping False \
|
| 117 |
+
--use_textline_orientation True \
|
| 118 |
+
--save_path ./output \
|
| 119 |
+
--device gpu:0
|
| 120 |
+
```
|
| 121 |
+
|
| 122 |
+
Results are printed to the terminal:
|
| 123 |
+
|
| 124 |
+
```json
|
| 125 |
+
{'res': {'input_path': '/root/.paddlex/predict_input/c3hSldnYVQXp48T5V0Ze4.png', 'page_index': None, 'model_settings': {'use_doc_preprocessor': True, 'use_textline_orientation': True}, 'doc_preprocessor_res': {'input_path': None, 'page_index': None, 'model_settings': {'use_doc_orientation_classify': False, 'use_doc_unwarping': False}, 'angle': -1}, 'dt_polys': array([[[252, 172],
|
| 126 |
+
...,
|
| 127 |
+
[254, 241]],
|
| 128 |
+
|
| 129 |
+
...,
|
| 130 |
+
|
| 131 |
+
[[665, 566],
|
| 132 |
+
...,
|
| 133 |
+
[663, 601]]], dtype=int16), 'text_det_params': {'limit_side_len': 64, 'limit_type': 'min', 'thresh': 0.3, 'max_side_limit': 4000, 'box_thresh': 0.6, 'unclip_ratio': 1.5}, 'text_type': 'general', 'textline_orientation_angles': array([0, ..., 0]), 'text_rec_score_thresh': 0.0, 'rec_texts': ['The moon tells the sky', 'The sky tells the sea', 'The sea tells the tide', 'And the tide tells me', 'Lemn Sissay'], 'rec_scores': array([0.99890286, ..., 0.99840254]), 'rec_polys': array([[[252, 172],
|
| 134 |
+
...,
|
| 135 |
+
[254, 241]],
|
| 136 |
+
|
| 137 |
+
...,
|
| 138 |
+
|
| 139 |
+
[[665, 566],
|
| 140 |
+
...,
|
| 141 |
+
[663, 601]]], dtype=int16), 'rec_boxes': array([[252, ..., 241],
|
| 142 |
+
...,
|
| 143 |
+
[663, ..., 612]], dtype=int16)}}
|
| 144 |
+
```
|
| 145 |
+
|
| 146 |
+
If save_path is specified, the visualization results will be saved under `save_path`. The visualization output is shown below:
|
| 147 |
+
|
| 148 |
+

|
| 149 |
+
|
| 150 |
+
The command-line method is for quick experience. For project integration, also only a few codes are needed as well:
|
| 151 |
+
|
| 152 |
+
```python
|
| 153 |
+
from paddleocr import PaddleOCR
|
| 154 |
+
|
| 155 |
+
ocr = PaddleOCR(
|
| 156 |
+
text_recognition_model_name="en_PP-OCRv4_mobile_rec",
|
| 157 |
+
use_doc_orientation_classify=False, # Use use_doc_orientation_classify to enable/disable document orientation classification model
|
| 158 |
+
use_doc_unwarping=False, # Use use_doc_unwarping to enable/disable document unwarping module
|
| 159 |
+
use_textline_orientation=True, # Use use_textline_orientation to enable/disable textline orientation classification model
|
| 160 |
+
device="gpu:0", # Use device to specify GPU for model inference
|
| 161 |
+
)
|
| 162 |
+
result = ocr.predict("https://cdn-uploads.huggingface.co/production/uploads/681c1ecd9539bdde5ae1733c/DcAem61DifjkUQK9f-0iZ.png")
|
| 163 |
+
for res in result:
|
| 164 |
+
res.print()
|
| 165 |
+
res.save_to_img("output")
|
| 166 |
+
res.save_to_json("output")
|
| 167 |
+
```
|
| 168 |
+
|
| 169 |
+
The default model used in pipeline is `PP-OCRv5_server_rec`, so it is needed that specifing to `en_PP-OCRv4_mobile_rec` by argument `text_recognition_model_name`. And you can also use the local model file by argument `text_recognition_model_dir`. For details about usage command and descriptions of parameters, please refer to the [Document](https://paddlepaddle.github.io/PaddleOCR/latest/en/version3.x/pipeline_usage/OCR.html#2-quick-start).
|
| 170 |
+
|
| 171 |
+
## Links
|
| 172 |
+
|
| 173 |
+
[PaddleOCR Repo](https://github.com/paddlepaddle/paddleocr)
|
| 174 |
+
|
| 175 |
+
[PaddleOCR Documentation](https://paddlepaddle.github.io/PaddleOCR/latest/en/index.html)
|