Tingquan commited on
Commit
d136e3e
·
verified ·
1 Parent(s): e50d82e

Upload folder using huggingface_hub

Browse files
Files changed (1) hide show
  1. README.md +168 -0
README.md ADDED
@@ -0,0 +1,168 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: apache-2.0
3
+ ---
4
+
5
+ # devanagari_PP-OCRv3_mobile_rec
6
+
7
+ ## Introduction
8
+
9
+ devanagari_PP-OCRv3_mobile_rec is a text line recognition model within the PP-OCRv3_rec series, developed by the PaddleOCR team. The devanagari_PP-OCRv3_mobile_rec model is an Devanagari-specific model trained based on PP-OCRv3_mobile_rec, and it supports Devanagari recognition. The key accuracy metrics are as follow:
10
+
11
+ <table>
12
+ <tr>
13
+ <th>Model</th>
14
+ <th>Recognition Avg Accuracy(%)</th>
15
+ <th>GPU Inference Time (ms)<br/>[Normal Mode / High-Performance Mode]</th>
16
+ <th>CPU Inference Time (ms)<br/>[Normal Mode / High-Performance Mode]</th>
17
+ <th>Model Storage Size (M)</th>
18
+ <th>Introduction</th>
19
+ </tr>
20
+ <tr>
21
+ <td>devanagari_PP-OCRv3_mobile_rec</td>
22
+ <td>96.44</td>
23
+ <td>5.22 / 0.79</td>
24
+ <td>8.56 / 4.06</td>
25
+ <td>7.9 M</td>
26
+ <td>An ultra-lightweight Devanagari alphabet recognition model trained based on the PP-OCRv3 recognition model, supporting Devanagari alphabet and numeric character recognition.</td>
27
+ </tr>
28
+
29
+ </table>
30
+
31
+
32
+
33
+ **Note**: If any character (including punctuation) in a line is incorrect, the entire line is marked as wrong. This ensures higher accuracy in practical applications.
34
+
35
+ ## Quick Start
36
+
37
+ ### Installation
38
+
39
+ 1. PaddlePaddle
40
+
41
+ Please refer to the following commands to install PaddlePaddle using pip:
42
+
43
+ ```bash
44
+ # for CUDA11.8
45
+ python -m pip install paddlepaddle-gpu==3.0.0 -i https://www.paddlepaddle.org.cn/packages/stable/cu118/
46
+
47
+ # for CUDA12.6
48
+ python -m pip install paddlepaddle-gpu==3.0.0 -i https://www.paddlepaddle.org.cn/packages/stable/cu126/
49
+
50
+ # for CPU
51
+ python -m pip install paddlepaddle==3.0.0 -i https://www.paddlepaddle.org.cn/packages/stable/cpu/
52
+ ```
53
+
54
+ For details about PaddlePaddle installation, please refer to the [PaddlePaddle official website](https://www.paddlepaddle.org.cn/en/install/quick).
55
+
56
+ 2. PaddleOCR
57
+
58
+ Install the latest version of the PaddleOCR inference package from PyPI:
59
+
60
+ ```bash
61
+ python -m pip install paddleocr
62
+ ```
63
+
64
+ ### Model Usage
65
+
66
+ You can quickly experience the functionality with a single command:
67
+
68
+ ```bash
69
+ paddleocr text_recognition \
70
+ --model_name devanagari_PP-OCRv3_mobile_rec \
71
+ -i https://cdn-uploads.huggingface.co/production/uploads/681c1ecd9539bdde5ae1733c/lpNu16sSBMXoRDt_DmUm6.png
72
+ ```
73
+
74
+ You can also integrate the model inference of the text recognition module into your project. Before running the following code, please download the sample image to your local machine.
75
+
76
+ ```python
77
+ from paddleocr import TextRecognition
78
+ model = TextRecognition(model_name="devanagari_PP-OCRv3_mobile_rec")
79
+ output = model.predict(input="lpNu16sSBMXoRDt_DmUm6.png", batch_size=1)
80
+ for res in output:
81
+ res.print()
82
+ res.save_to_img(save_path="./output/")
83
+ res.save_to_json(save_path="./output/res.json")
84
+ ```
85
+
86
+ After running, the obtained result is as follows:
87
+
88
+ ```json
89
+ {'res': {'input_path': '/root/.paddlex/predict_input/lpNu16sSBMXoRDt_DmUm6.png', 'page_index': None, 'rec_text': 'बहुपङिकतपाठपरीआापकर', 'rec_score': 0.9564684629440308}}
90
+ ```
91
+
92
+ For details about usage command and descriptions of parameters, please refer to the [Document](https://paddlepaddle.github.io/PaddleOCR/latest/en/version3.x/module_usage/text_recognition.html#iii-quick-start).
93
+
94
+ ### Pipeline Usage
95
+
96
+ The ability of a single model is limited. But the pipeline consists of several models can provide more capacity to resolve difficult problems in real-world scenarios.
97
+
98
+ #### PP-OCRv3
99
+
100
+ The general OCR pipeline is used to solve text recognition tasks by extracting text information from images and outputting it in string format. And there are 5 modules in the pipeline:
101
+ * Document Image Orientation Classification Module (Optional)
102
+ * Text Image Unwarping Module (Optional)
103
+ * Text Line Orientation Classification Module (Optional)
104
+ * Text Detection Module
105
+ * Text Recognition Module
106
+
107
+ Run a single command to quickly experience the OCR pipeline:
108
+
109
+ ```bash
110
+ paddleocr ocr -i https://cdn-uploads.huggingface.co/production/uploads/681c1ecd9539bdde5ae1733c/_5b764by68-a295JP4y1q.png \
111
+ --text_recognition_model_name devanagari_PP-OCRv3_mobile_rec \
112
+ --use_doc_orientation_classify False \
113
+ --use_doc_unwarping False \
114
+ --use_textline_orientation True \
115
+ --save_path ./output \
116
+ --device gpu:0
117
+ ```
118
+
119
+ Results are printed to the terminal:
120
+
121
+ ```json
122
+ {'res': {'input_path': '/root/.paddlex/predict_input/_5b764by68-a295JP4y1q.png', 'page_index': None, 'model_settings': {'use_doc_preprocessor': True, 'use_textline_orientation': True}, 'doc_preprocessor_res': {'input_path': None, 'page_index': None, 'model_settings': {'use_doc_orientation_classify': False, 'use_doc_unwarping': False}, 'angle': -1}, 'dt_polys': array([[[ 11, 8],
123
+ ...,
124
+ [ 11, 42]],
125
+
126
+ ...,
127
+
128
+ [[ 9, 88],
129
+ ...,
130
+ [ 9, 120]]], dtype=int16), 'text_det_params': {'limit_side_len': 64, 'limit_type': 'min', 'thresh': 0.3, 'max_side_limit': 4000, 'box_thresh': 0.6, 'unclip_ratio': 1.5}, 'text_type': 'general', 'textline_orientation_angles': array([0, ..., 1]), 'text_rec_score_thresh': 0.0, 'rec_texts': ['िसिरिलक', 'IBlhhh?', 'H॰'], 'rec_scores': array([0.98613745, ..., 0.5240429 ]), 'rec_polys': array([[[ 11, 8],
131
+ ...,
132
+ [ 11, 42]],
133
+
134
+ ...,
135
+
136
+ [[ 9, 88],
137
+ ...,
138
+ [ 9, 120]]], dtype=int16), 'rec_boxes': array([[ 11, ..., 42],
139
+ ...,
140
+ [ 9, ..., 120]], dtype=int16)}}
141
+ ```
142
+
143
+ The command-line method is for quick experience. For project integration, also only a few codes are needed as well:
144
+
145
+ ```python
146
+ from paddleocr import PaddleOCR
147
+
148
+ ocr = PaddleOCR(
149
+ text_recognition_model_name="devanagari_PP-OCRv3_mobile_rec",
150
+ use_doc_orientation_classify=False, # Use use_doc_orientation_classify to enable/disable document orientation classification model
151
+ use_doc_unwarping=False, # Use use_doc_unwarping to enable/disable document unwarping module
152
+ use_textline_orientation=True, # Use use_textline_orientation to enable/disable textline orientation classification model
153
+ device="gpu:0", # Use device to specify GPU for model inference
154
+ )
155
+ result = ocr.predict("https://cdn-uploads.huggingface.co/production/uploads/681c1ecd9539bdde5ae1733c/c3hSldnYVQXp48T5V0Ze4.png")
156
+ for res in result:
157
+ res.print()
158
+ res.save_to_img("output")
159
+ res.save_to_json("output")
160
+ ```
161
+
162
+ The default model used in pipeline is `PP-OCRv5_server_rec`, so it is needed that specifing to `devanagari_PP-OCRv3_mobile_rec` by argument `text_recognition_model_name`. And you can also use the local model file by argument `text_recognition_model_dir`. For details about usage command and descriptions of parameters, please refer to the [Document](https://paddlepaddle.github.io/PaddleOCR/latest/en/version3.x/pipeline_usage/OCR.html#2-quick-start).
163
+
164
+ ## Links
165
+
166
+ [PaddleOCR Repo](https://github.com/paddlepaddle/paddleocr)
167
+
168
+ [PaddleOCR Documentation](https://paddlepaddle.github.io/PaddleOCR/latest/en/index.html)