Tingquan commited on
Commit
6736f9c
·
verified ·
1 Parent(s): c8f0140

Upload folder using huggingface_hub

Browse files
Files changed (1) hide show
  1. README.md +172 -0
README.md ADDED
@@ -0,0 +1,172 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: apache-2.0
3
+ ---
4
+
5
+ # ch_RepSVTR_rec
6
+
7
+ ## Introduction
8
+
9
+ RepSVTR is a mobile-side text recognition model based on SVTRv2. It won the first prize in the PaddleOCR Algorithm Model Challenge - Task 1: OCR End-to-End Recognition Task, with a 2.5% improvement in end-to-end recognition accuracy on Leaderboard B compared to PP-OCRv4, while maintaining similar inference speed. It supports text line recognition in general Chinese and English scenarios, but mainly focuses on Chinese. The key accuracy metrics are as follow:
10
+
11
+ <table>
12
+ <tr>
13
+ <th>Model</th>
14
+ <th>Recognition Avg Accuracy(%)</th>
15
+ <th>GPU Inference Time (ms)<br/>[Normal Mode / High-Performance Mode]</th>
16
+ <th>CPU Inference Time (ms)<br/>[Normal Mode / High-Performance Mode]</th>
17
+ <th>Model Storage Size (M)</th>
18
+ </tr>
19
+ <tr>
20
+ <td>ch_RepSVTR_rec</td>
21
+ <td>65.07</td>
22
+ <td>5.93 / 1.62</td>
23
+ <td>20.73 / 7.32</td>
24
+ <td>22.1 M</td>
25
+ </tr>
26
+ </table>
27
+
28
+
29
+ **Note**: If any character (including punctuation) in a line is incorrect, the entire line is marked as wrong. This ensures higher accuracy in practical applications.
30
+
31
+ ## Quick Start
32
+
33
+ ### Installation
34
+
35
+ 1. PaddlePaddle
36
+
37
+ Please refer to the following commands to install PaddlePaddle using pip:
38
+
39
+ ```bash
40
+ # for CUDA11.8
41
+ python -m pip install paddlepaddle-gpu==3.0.0 -i https://www.paddlepaddle.org.cn/packages/stable/cu118/
42
+
43
+ # for CUDA12.6
44
+ python -m pip install paddlepaddle-gpu==3.0.0 -i https://www.paddlepaddle.org.cn/packages/stable/cu126/
45
+
46
+ # for CPU
47
+ python -m pip install paddlepaddle==3.0.0 -i https://www.paddlepaddle.org.cn/packages/stable/cpu/
48
+ ```
49
+
50
+ For details about PaddlePaddle installation, please refer to the [PaddlePaddle official website](https://www.paddlepaddle.org.cn/en/install/quick).
51
+
52
+ 2. PaddleOCR
53
+
54
+ Install the latest version of the PaddleOCR inference package from PyPI:
55
+
56
+ ```bash
57
+ python -m pip install paddleocr
58
+ ```
59
+
60
+ ### Model Usage
61
+
62
+ You can quickly experience the functionality with a single command:
63
+
64
+ ```bash
65
+ paddleocr text_recognition \
66
+ --model_name ch_RepSVTR_rec \
67
+ -i https://cdn-uploads.huggingface.co/production/uploads/681c1ecd9539bdde5ae1733c/QmaPtftqwOgCtx0AIvU2z.png
68
+ ```
69
+
70
+ You can also integrate the model inference of the text recognition module into your project. Before running the following code, please download the sample image to your local machine.
71
+
72
+ ```python
73
+ from paddleocr import TextRecognition
74
+ model = TextRecognition(model_name="ch_RepSVTR_rec")
75
+ output = model.predict(input="QmaPtftqwOgCtx0AIvU2z.png", batch_size=1)
76
+ for res in output:
77
+ res.print()
78
+ res.save_to_img(save_path="./output/")
79
+ res.save_to_json(save_path="./output/res.json")
80
+ ```
81
+
82
+ After running, the obtained result is as follows:
83
+
84
+ ```json
85
+ {'res': {'input_path': '/root/.paddlex/predict_input/QmaPtftqwOgCtx0AIvU2z.png', 'page_index': None, 'rec_text': 'the number of model parameters and FLOPs get larger, it', 'rec_score': 0.9997341632843018}}
86
+ ```
87
+
88
+ The visualized image is as follows:
89
+
90
+ ![image/jpeg](https://cdn-uploads.huggingface.co/production/uploads/681c1ecd9539bdde5ae1733c/Qx9YVOh1-P5i7HbG2oOtq.png)
91
+
92
+ For details about usage command and descriptions of parameters, please refer to the [Document](https://paddlepaddle.github.io/PaddleOCR/latest/en/version3.x/module_usage/text_recognition.html#iii-quick-start).
93
+
94
+ ### Pipeline Usage
95
+
96
+ The ability of a single model is limited. But the pipeline consists of several models can provide more capacity to resolve difficult problems in real-world scenarios.
97
+
98
+ #### PP-OCR
99
+
100
+ The general OCR pipeline is used to solve text recognition tasks by extracting text information from images and outputting it in string format. And there are 5 modules in the pipeline:
101
+ * Document Image Orientation Classification Module (Optional)
102
+ * Text Image Unwarping Module (Optional)
103
+ * Text Line Orientation Classification Module (Optional)
104
+ * Text Detection Module
105
+ * Text Recognition Module
106
+
107
+ Run a single command to quickly experience the OCR pipeline:
108
+
109
+ ```bash
110
+ paddleocr ocr -i https://cdn-uploads.huggingface.co/production/uploads/681c1ecd9539bdde5ae1733c/818ebrVG4OtH3sjLR-NRI.png \
111
+ --text_recognition_model_name ch_RepSVTR_rec \
112
+ --use_doc_orientation_classify False \
113
+ --use_doc_unwarping False \
114
+ --use_textline_orientation True \
115
+ --save_path ./output \
116
+ --device gpu:0
117
+ ```
118
+
119
+ Results are printed to the terminal:
120
+
121
+ ```json
122
+ {'res': {'input_path': '/root/.paddlex/predict_input/818ebrVG4OtH3sjLR-NRI.png', 'page_index': None, 'model_settings': {'use_doc_preprocessor': True, 'use_textline_orientation': True}, 'doc_preprocessor_res': {'input_path': None, 'page_index': None, 'model_settings': {'use_doc_orientation_classify': False, 'use_doc_unwarping': False}, 'angle': -1}, 'dt_polys': array([[[ 0, 10],
123
+ ...,
124
+ [ 0, 72]],
125
+
126
+ ...,
127
+
128
+ [[189, 915],
129
+ ...,
130
+ [190, 960]]], dtype=int16), 'text_det_params': {'limit_side_len': 64, 'limit_type': 'min', 'thresh': 0.3, 'max_side_limit': 4000, 'box_thresh': 0.6, 'unclip_ratio': 1.5}, 'text_type': 'general', 'textline_orientation_angles': array([1, ..., 0]), 'text_rec_score_thresh': 0.0, 'rec_texts': ['等将海中中:0028866', 'PASS', '登机牌', 'BOARDING', '座位号', 'SEAT NO.', '舱位', 'CLASS', '序号', '日期DATE', 'SERIAL NO.', '航班FLIGHT', 'W', '035', 'MU237903DEC', '始发地', 'FROM', '登机口', 'GATE', '登机时间BDT', '目的地TO', '福州', 'TAIYUAN', 'G11', 'FUZHOU', '身份识别IDNO.', '姓名', 'NAME', 'ZHANGQIWEI', '票号TKTNO', '张祺伟', '票价FARE', 'ETKT7813699238489/1', '登机口于起飞前1O分钟关闭GATESCLOSE10MINUTESBEFOREDEPARTURETIME'], 'rec_scores': array([0.58707291, ..., 0.98247343]), 'rec_polys': array([[[ 0, 10],
131
+ ...,
132
+ [ 0, 72]],
133
+
134
+ ...,
135
+
136
+ [[189, 915],
137
+ ...,
138
+ [190, 960]]], dtype=int16), 'rec_boxes': array([[ 0, ..., 72],
139
+ ...,
140
+ [189, ..., 960]], dtype=int16)}}
141
+ ```
142
+
143
+ If save_path is specified, the visualization results will be saved under `save_path`. The visualization output is shown below:
144
+
145
+ ![image/jpeg](https://cdn-uploads.huggingface.co/production/uploads/681c1ecd9539bdde5ae1733c/MtNNXEOE4Uz9oi3v3cmgU.png)
146
+
147
+ The command-line method is for quick experience. For project integration, also only a few codes are needed as well:
148
+
149
+ ```python
150
+ from paddleocr import PaddleOCR
151
+
152
+ ocr = PaddleOCR(
153
+ text_recognition_model_name="ch_RepSVTR_rec",
154
+ use_doc_orientation_classify=False, # Use use_doc_orientation_classify to enable/disable document orientation classification model
155
+ use_doc_unwarping=False, # Use use_doc_unwarping to enable/disable document unwarping module
156
+ use_textline_orientation=True, # Use use_textline_orientation to enable/disable textline orientation classification model
157
+ device="gpu:0", # Use device to specify GPU for model inference
158
+ )
159
+ result = ocr.predict("https://cdn-uploads.huggingface.co/production/uploads/681c1ecd9539bdde5ae1733c/818ebrVG4OtH3sjLR-NRI.png")
160
+ for res in result:
161
+ res.print()
162
+ res.save_to_img("output")
163
+ res.save_to_json("output")
164
+ ```
165
+
166
+ The default model used in pipeline is `PP-OCRv5_server_rec`, so it is needed that specifing to `ch_RepSVTR_rec` by argument `text_recognition_model_name`. And you can also use the local model file by argument `text_recognition_model_dir`. For details about usage command and descriptions of parameters, please refer to the [Document](https://paddlepaddle.github.io/PaddleOCR/latest/en/version3.x/pipeline_usage/OCR.html#2-quick-start).
167
+
168
+ ## Links
169
+
170
+ [PaddleOCR Repo](https://github.com/paddlepaddle/paddleocr)
171
+
172
+ [PaddleOCR Documentation](https://paddlepaddle.github.io/PaddleOCR/latest/en/index.html)