Upload README.md
Browse files
README.md
ADDED
@@ -0,0 +1,172 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: apache-2.0
|
3 |
+
library_name: PaddleOCR
|
4 |
+
language:
|
5 |
+
- en
|
6 |
+
- zh
|
7 |
+
pipeline_tag: image-to-text
|
8 |
+
tags:
|
9 |
+
- OCR
|
10 |
+
- PaddlePaddle
|
11 |
+
- PaddleOCR
|
12 |
+
- textline_detection
|
13 |
+
---
|
14 |
+
|
15 |
+
# PP-OCRv3_mobile_det
|
16 |
+
|
17 |
+
## Introduction
|
18 |
+
|
19 |
+
PP-OCRv3_mobile_det is one of the PP-OCRv3_det series models, a set of text detection models developed by the PaddleOCR team. This mobile-optimized text detection model offers higher efficiency, making it ideal for deployment on edge devices.
|
20 |
+
|
21 |
+
## Quick Start
|
22 |
+
|
23 |
+
### Installation
|
24 |
+
|
25 |
+
1. PaddlePaddle
|
26 |
+
|
27 |
+
Please refer to the following commands to install PaddlePaddle using pip:
|
28 |
+
|
29 |
+
```bash
|
30 |
+
# for CUDA11.8
|
31 |
+
python -m pip install paddlepaddle-gpu==3.0.0 -i https://www.paddlepaddle.org.cn/packages/stable/cu118/
|
32 |
+
|
33 |
+
# for CUDA12.6
|
34 |
+
python -m pip install paddlepaddle-gpu==3.0.0 -i https://www.paddlepaddle.org.cn/packages/stable/cu126/
|
35 |
+
|
36 |
+
# for CPU
|
37 |
+
python -m pip install paddlepaddle==3.0.0 -i https://www.paddlepaddle.org.cn/packages/stable/cpu/
|
38 |
+
```
|
39 |
+
|
40 |
+
For details about PaddlePaddle installation, please refer to the [PaddlePaddle official website](https://www.paddlepaddle.org.cn/en/install/quick).
|
41 |
+
|
42 |
+
2. PaddleOCR
|
43 |
+
|
44 |
+
Install the latest version of the PaddleOCR inference package from PyPI:
|
45 |
+
|
46 |
+
```bash
|
47 |
+
python -m pip install paddleocr
|
48 |
+
```
|
49 |
+
|
50 |
+
### Model Usage
|
51 |
+
|
52 |
+
You can quickly experience the functionality with a single command:
|
53 |
+
|
54 |
+
```bash
|
55 |
+
paddleocr text_detection \
|
56 |
+
--model_name PP-OCRv3_mobile_det \
|
57 |
+
-i https://cdn-uploads.huggingface.co/production/uploads/681c1ecd9539bdde5ae1733c/3ul2Rq4Sk5Cn-l69D695U.png
|
58 |
+
```
|
59 |
+
|
60 |
+
You can also integrate the model inference of the text detection module into your project. Before running the following code, please download the sample image to your local machine.
|
61 |
+
|
62 |
+
```python
|
63 |
+
from paddleocr import TextDetection
|
64 |
+
model = TextDetection(model_name="PP-OCRv3_mobile_det")
|
65 |
+
output = model.predict(input="3ul2Rq4Sk5Cn-l69D695U.png", batch_size=1)
|
66 |
+
for res in output:
|
67 |
+
res.print()
|
68 |
+
res.save_to_img(save_path="./output/")
|
69 |
+
res.save_to_json(save_path="./output/res.json")
|
70 |
+
```
|
71 |
+
|
72 |
+
After running, the obtained result is as follows:
|
73 |
+
|
74 |
+
```json
|
75 |
+
{'res': {'input_path': '/root/.paddlex/predict_input/3ul2Rq4Sk5Cn-l69D695U.png', 'page_index': None, 'dt_polys': array([[[ 637, 1429],
|
76 |
+
...,
|
77 |
+
[ 634, 1450]],
|
78 |
+
|
79 |
+
...,
|
80 |
+
|
81 |
+
[[ 356, 106],
|
82 |
+
...,
|
83 |
+
[ 356, 127]]], dtype=int16), 'dt_scores': [0.8440782190003071, 0.7211973560197601, ..., 0.9473868156887905]}}
|
84 |
+
```
|
85 |
+
|
86 |
+
The visualized image is as follows:
|
87 |
+
|
88 |
+

|
89 |
+
|
90 |
+
For details about usage command and descriptions of parameters, please refer to the [Document](https://paddlepaddle.github.io/PaddleOCR/latest/en/version3.x/module_usage/text_detection.html#iii-quick-start).
|
91 |
+
|
92 |
+
### Pipeline Usage
|
93 |
+
|
94 |
+
The ability of a single model is limited. But the pipeline consists of several models can provide more capacity to resolve difficult problems in real-world scenarios.
|
95 |
+
|
96 |
+
#### PP-OCRv3
|
97 |
+
|
98 |
+
The general OCR pipeline is used to solve text recognition tasks by extracting text information from images and outputting it in text form. And there are 5 modules in the pipeline:
|
99 |
+
* Document Image Orientation Classification Module (Optional)
|
100 |
+
* Text Image Unwarping Module (Optional)
|
101 |
+
* Text Line Orientation Classification Module (Optional)
|
102 |
+
* Text Detection Module
|
103 |
+
* Text Recognition Module
|
104 |
+
|
105 |
+
Run a single command to quickly experience the OCR pipeline:
|
106 |
+
|
107 |
+
```bash
|
108 |
+
paddleocr ocr -i https://cdn-uploads.huggingface.co/production/uploads/681c1ecd9539bdde5ae1733c/3ul2Rq4Sk5Cn-l69D695U.png \
|
109 |
+
--text_detection_model_name PP-OCRv3_mobile_det \
|
110 |
+
--text_recognition_model_name PP-OCRv3_mobile_rec \
|
111 |
+
--use_doc_orientation_classify False \
|
112 |
+
--use_doc_unwarping False \
|
113 |
+
--use_textline_orientation False \
|
114 |
+
--save_path ./output \
|
115 |
+
--device gpu:0
|
116 |
+
```
|
117 |
+
|
118 |
+
Results are printed to the terminal:
|
119 |
+
|
120 |
+
```json
|
121 |
+
{'res': {'input_path': '/root/.paddlex/predict_input/3ul2Rq4Sk5Cn-l69D695U.png', 'page_index': None, 'model_settings': {'use_doc_preprocessor': True, 'use_textline_orientation': False}, 'doc_preprocessor_res': {'input_path': None, 'page_index': None, 'model_settings': {'use_doc_orientation_classify': False, 'use_doc_unwarping': False}, 'angle': -1}, 'dt_polys': array([[[ 354, 106],
|
122 |
+
...,
|
123 |
+
[ 354, 127]],
|
124 |
+
|
125 |
+
...,
|
126 |
+
|
127 |
+
[[ 633, 1433],
|
128 |
+
...,
|
129 |
+
[ 633, 1449]]], dtype=int16), 'text_det_params': {'limit_side_len': 64, 'limit_type': 'min', 'thresh': 0.3, 'max_side_limit': 4000, 'box_thresh': 0.6, 'unclip_ratio': 1.5}, 'text_type': 'general', 'textline_orientation_angles': array([-1, ..., -1]), 'text_rec_score_thresh': 0.0, 'rec_texts': ['Algorithms for the Markov Entropy Decomposition', 'Andrew J.Ferris and David Poulin', 'Departement de Physique, Universite de Sherbrooke,Quebec, JIK 2RI, Canada', '(Dated: October 31,2018)', 'The Markov entropy decomposition (MED)is a recently-proposed, cluster-based simulation method for fi-', 'nite temperature quantum systems with arbitrary geometry. In this paper, we detail numerical algorithms for', 'performing the required steps of the MED,principally solving aminimization problem with a preconditioned', '09', "Newton's algorithm, aswell ashowtoextractglobal susceptibilities and thermal responses.Wedemonstrate", 'thepower of the method withthe spin-1/2XXZmodel on the 2D square lattice, including the extraction of', 'criticalpointsanddetailsofeachphase.Althoughthemethodsharessomequalitativesimilaritieswithexact-', 'diagonalization, we show theMEDisbothmore accurate and significantlymoreflexible.', 'PACS numbers: 05.10.a, 02.50.Ng, 03.67.a, 74.40.Kb', 'I.INTRODUCTION', 'This approximation becomes exact in the case of a1D quan-', 'tum (or classical) Markov chain [1O], and leads to an expo-', '[', 'Although the equations governing quantum many-body', 'nential reduction of costforexactentropy calculationswhen', 'systemsare simpleto write down,finding solutions for the', 'theglobaldensitymatrixis ahigher-dimensional Markovnet-', 'majority of systems remains incrediblydifficult.Modern', 'work state[12, 13].', 'physics finds itself in need of new tools to compute the emer-', 'The second approximation used in theMED approach is', 'gent behavior of large, many-body systems.', 'related to the N-representibilityproblem.Givena set of lo-', 'There has been a great variety of tools developed to tackle', 'cal but overlapping reduced density matrices fp:f, it is a very', 'many-bodyproblems,butingeneral,large2Dand3Dquan-', 'challengingproblem to determine if there exists aglobal den-', 'tum systems remain hard to deal with.Most systems are', 'sity operator which is positive semi-definite and whose partial', 'thought to be non-integrable,so exact analytic solutions are', 'trace agrees with each p. This problem is QMA-hard (the', 'notusuallyexpected.Directnumerical diagonalizationcanbe', 'quantumanalogue of NP)[14,15],and is hopelessly diffi-', 'performed for relatively small systemshowever the emer-', 'culttoenforce.Thus,thesecondapproximationemployed', 'gentbehavior of a system in thethermodynamic limitmaybe', 'involves ignoringglobal consistency withapositive opera-', 'difficult to extract, especially in systems with large correlation', 'tor,whilerequiringlocalconsistencyonanyoverlappingre-', 'lengths.MonteCarlo approaches aretechnically exact (up to', 'gions between the pi. At the zero-temperature limit, the MED', '', 'sampling error),but sufferfrom the so-called sign problem', 'approach becomes analogous tothe variational nth-order re-', '一', 'forfermionic,frustrated,or dynamicalproblems.Thus we are', 'duced density matrix approach, where positivity is enforced', '', 'limited to search for clever approximations to solve the ma-', 'onallreduceddensitymatricesofsizen[16-18].', 'jorityofmany-bodyproblems.', 'The MED approachis an extremely flexible cluster method,', 'Over the past century,hundreds of such approximations', 'applicabletobothtranslationally invariant systems of anydi-', 'have been proposed, and we will mention just a few notable', 'mensioninthethermodynamiclimit,aswell asfinite systems', '1', 'examples applicable to quantumlattice models.Mean-field', 'or systems without translational invariance (e.g. disordered', 'theory is simple and frequently arrives at the correct quali-', 'lattices,orharmonicallytrapped atoms in optical lattices)', '11', 'tativedescription,butoftenfails when correlations areim-', 'Thefree energy given byMED is guaranteed to lowerbound', 'portant.Density-matrix renormalisation group (DMRG) [1]', 'the true free energy, which in turn lower-bounds the ground', '[ :A!', 'is efficient and extremely accurate at solving 1D problems', 'state energy-thus providing a natural complement to varia-', 'but the computational cost grows exponentially with system', 'tional approaches which upper-bound the ground state energy.', '!XIe', 'size in two- or higher-dimensions [2, 3].Related tensor-', 'The ability to provide a rigorous ground-state energy window', 'networktechniquesdesignedfor2Dsystemsarestillintheir', 'is a powerful validation tool, creating a very compellingrea-', 'infancy[4-6].Series-expansionmethods[7]canbe success-', 'son to use this approach.', 'ful, but may diverge or otherwise converge slowly, obscuring', 'In this paper we paper we present a pedagogical introduc-', 'the state in certain regimes. There exist a variety of cluster-', 'tion to MED, including numerical implementation issues and', 'based techniques, such as dynamical-mean-field theory[8]', 'applicationsto 2D quantumlatticemodels in thethermody-', 'and density-matrix embedding [9].', 'namiclimit.In Sec.II,we give a brief derivation of the', 'Herewediscusstheso-calledMarkoventropydecompo-', 'Markov entropydecomposition.SectionIIIoutlinesarobust', 'sition (MED),recently proposed by Poulin & Hastings [1O]', 'numerical strategy for optimizing the clusters that make up', '(andanalogoustoaslightlyearlierclassicalalgorithm[11)).', 'thedecomposition.InSec.IVweshowhowwecanextend', 'This is a self-consistent cluster method for finitetemperature', 'these algorithms toextractnon-trivial information,such as', 'systemsthattakesadvantageofanapproximationofthe(von', 'specific heat and susceptibilities. We present an application of', 'Neumann) entropy. In [1o], it was shown that the entropy', 'the method to the spin-1/2 XXZ model on a 2D square lattice', 'persitecanberigorouslyupperboundedusingonlylocalin-', 'inSec.V,describinghowtocharacterizethephasediagram', 'formationa local,reduced densitymatrix onN sites,say.', 'anddeterminecriticalpoints,beforeconcludinginSec.Vl'], 'rec_scores': array([0.92904288, ..., 0.92923349]), 'rec_polys': array([[[ 354, 106],
|
130 |
+
...,
|
131 |
+
[ 354, 127]],
|
132 |
+
|
133 |
+
...,
|
134 |
+
|
135 |
+
[[ 633, 1433],
|
136 |
+
...,
|
137 |
+
[ 633, 1449]]], dtype=int16), 'rec_boxes': array([[ 354, ..., 128],
|
138 |
+
...,
|
139 |
+
[ 633, ..., 1449]], dtype=int16)}}
|
140 |
+
```
|
141 |
+
|
142 |
+
If save_path is specified, the visualization results will be saved under `save_path`. The visualization output is shown below:
|
143 |
+
|
144 |
+

|
145 |
+
|
146 |
+
The command-line method is for quick experience. For project integration, also only a few codes are needed as well:
|
147 |
+
|
148 |
+
```python
|
149 |
+
from paddleocr import PaddleOCR
|
150 |
+
|
151 |
+
ocr = PaddleOCR(
|
152 |
+
text_detection_model_name="PP-OCRv3_mobile_det",
|
153 |
+
text_recognition_model_name="PP-OCRv3_mobile_rec",
|
154 |
+
use_doc_orientation_classify=False, # Disables document orientation classification model via this parameter
|
155 |
+
use_doc_unwarping=False, # Disables text image rectification model via this parameter
|
156 |
+
use_textline_orientation=False, # Disables text line orientation classification model via this parameter
|
157 |
+
)
|
158 |
+
result = ocr.predict("./3ul2Rq4Sk5Cn-l69D695U.png")
|
159 |
+
for res in result:
|
160 |
+
res.print()
|
161 |
+
res.save_to_img("output")
|
162 |
+
res.save_to_json("output")
|
163 |
+
```
|
164 |
+
|
165 |
+
For details about usage command and descriptions of parameters, please refer to the [Document](https://paddlepaddle.github.io/PaddleOCR/latest/en/version3.x/pipeline_usage/OCR.html#2-quick-start).
|
166 |
+
|
167 |
+
|
168 |
+
## Links
|
169 |
+
|
170 |
+
[PaddleOCR Repo](https://github.com/paddlepaddle/paddleocr)
|
171 |
+
|
172 |
+
[PaddleOCR Documentation](https://paddlepaddle.github.io/PaddleOCR/latest/en/index.html)
|