Upload SB_ASR_FLEURS_finetuning.ipynb
Browse files- SB_ASR_FLEURS_finetuning.ipynb +689 -0
SB_ASR_FLEURS_finetuning.ipynb
ADDED
|
@@ -0,0 +1,689 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"cells": [
|
| 3 |
+
{
|
| 4 |
+
"cell_type": "markdown",
|
| 5 |
+
"id": "49b85514-0fb6-49c6-be76-259bfeb638c6",
|
| 6 |
+
"metadata": {},
|
| 7 |
+
"source": [
|
| 8 |
+
"# Introduction\n",
|
| 9 |
+
"N'hésitez pas à nous contacter en cas de questions : [email protected] & [email protected]\n",
|
| 10 |
+
"\n",
|
| 11 |
+
"Pensez à modifier l'ensemble des PATH dans le fichier de configuration ASR_FLEURSswahili_hf.yaml et dans le code python ci-dessous (PATH_TO_YOUR_FOLDER).\n",
|
| 12 |
+
"\n",
|
| 13 |
+
"Dans le cas d'un changement de corpus (autre sous partie de FLEURS / vos propres jeux de données), pensez à modifier la taille de la couche de sortie du modèle : ASR_swahili_hf.yaml/output_neurons\n"
|
| 14 |
+
]
|
| 15 |
+
},
|
| 16 |
+
{
|
| 17 |
+
"cell_type": "markdown",
|
| 18 |
+
"id": "e62faa86-911a-48ce-82bc-8a34e13ffbc4",
|
| 19 |
+
"metadata": {},
|
| 20 |
+
"source": [
|
| 21 |
+
"# Préparation des données FLEURS"
|
| 22 |
+
]
|
| 23 |
+
},
|
| 24 |
+
{
|
| 25 |
+
"cell_type": "markdown",
|
| 26 |
+
"id": "c6ccf4a5-cad1-4632-8954-f4e454ff3540",
|
| 27 |
+
"metadata": {},
|
| 28 |
+
"source": [
|
| 29 |
+
"### 1. Installation des dépendances"
|
| 30 |
+
]
|
| 31 |
+
},
|
| 32 |
+
{
|
| 33 |
+
"cell_type": "code",
|
| 34 |
+
"execution_count": null,
|
| 35 |
+
"id": "7bb8b44e-826f-4f13-b128-eebbd18dedc5",
|
| 36 |
+
"metadata": {
|
| 37 |
+
"jupyter": {
|
| 38 |
+
"source_hidden": true
|
| 39 |
+
}
|
| 40 |
+
},
|
| 41 |
+
"outputs": [],
|
| 42 |
+
"source": [
|
| 43 |
+
"pip install datasets librosa soundfile"
|
| 44 |
+
]
|
| 45 |
+
},
|
| 46 |
+
{
|
| 47 |
+
"cell_type": "markdown",
|
| 48 |
+
"id": "016d7646-bcca-4422-8b28-9d12d4b86c8f",
|
| 49 |
+
"metadata": {},
|
| 50 |
+
"source": [
|
| 51 |
+
"### 2. Téléchargement et formatage du dataset"
|
| 52 |
+
]
|
| 53 |
+
},
|
| 54 |
+
{
|
| 55 |
+
"cell_type": "code",
|
| 56 |
+
"execution_count": null,
|
| 57 |
+
"id": "da273973-05ee-4de5-830e-34d7f2220353",
|
| 58 |
+
"metadata": {},
|
| 59 |
+
"outputs": [],
|
| 60 |
+
"source": [
|
| 61 |
+
"from datasets import load_dataset\n",
|
| 62 |
+
"from pathlib import Path\n",
|
| 63 |
+
"from collections import OrderedDict\n",
|
| 64 |
+
"from tqdm import tqdm\n",
|
| 65 |
+
"import shutil\n",
|
| 66 |
+
"import os\n",
|
| 67 |
+
"\n",
|
| 68 |
+
"dataset_write_base = \"PATH_TO_YOUR_FOLDER/data_speechbrain/\"\n",
|
| 69 |
+
"cache_dir = \"PATH_TO_YOUR_FOLDER/data_huggingface/\"\n",
|
| 70 |
+
"\n",
|
| 71 |
+
"if os.path.isdir(cache_dir):\n",
|
| 72 |
+
" print(\"rm -rf \"+cache_dir)\n",
|
| 73 |
+
" os.system(\"rm -rf \"+cache_dir)\n",
|
| 74 |
+
"\n",
|
| 75 |
+
"if os.path.isdir(dataset_write_base):\n",
|
| 76 |
+
" print(\"rm -rf \"+dataset_write_base)\n",
|
| 77 |
+
" os.system(\"rm -rf \"+dataset_write_base)\n",
|
| 78 |
+
"\n",
|
| 79 |
+
"# **************************************\n",
|
| 80 |
+
"# choix des langues à extraire de FLEURS\n",
|
| 81 |
+
"# **************************************\n",
|
| 82 |
+
"lang_dict = OrderedDict([\n",
|
| 83 |
+
" #(\"Afrikaans\",\"af_za\"),\n",
|
| 84 |
+
" #(\"Amharic\", \"am_et\"),\n",
|
| 85 |
+
" #(\"Fula\", \"ff_sn\"),\n",
|
| 86 |
+
" #(\"Ganda\", \"lg_ug\"),\n",
|
| 87 |
+
" #(\"Hausa\", \"ha_ng\"),\n",
|
| 88 |
+
" #(\"Igbo\", \"ig_ng\"),\n",
|
| 89 |
+
" #(\"Kamba\", \"kam_ke\"),\n",
|
| 90 |
+
" #(\"Lingala\", \"ln_cd\"),\n",
|
| 91 |
+
" #(\"Luo\", \"luo_ke\"),\n",
|
| 92 |
+
" #(\"Northern-Sotho\", \"nso_za\"),\n",
|
| 93 |
+
" #(\"Nyanja\", \"ny_mw\"),\n",
|
| 94 |
+
" #(\"Oromo\", \"om_et\"),\n",
|
| 95 |
+
" #(\"Shona\", \"sn_zw\"),\n",
|
| 96 |
+
" #(\"Somali\", \"so_so\"),\n",
|
| 97 |
+
" (\"Swahili\", \"sw_ke\"),\n",
|
| 98 |
+
" #(\"Umbundu\", \"umb_ao\"),\n",
|
| 99 |
+
" #(\"Wolof\", \"wo_sn\"), \n",
|
| 100 |
+
" #(\"Xhosa\", \"xh_za\"), \n",
|
| 101 |
+
" #(\"Yoruba\", \"yo_ng\"), \n",
|
| 102 |
+
" #(\"Zulu\", \"zu_za\")\n",
|
| 103 |
+
" ])\n",
|
| 104 |
+
"\n",
|
| 105 |
+
"# ********************************\n",
|
| 106 |
+
"# choix des sous-parties à traiter\n",
|
| 107 |
+
"# ********************************\n",
|
| 108 |
+
"datasets = [\"train\",\"test\",\"validation\"]\n",
|
| 109 |
+
"\n",
|
| 110 |
+
"for lang in lang_dict:\n",
|
| 111 |
+
" print(\"Prepare --->\", lang)\n",
|
| 112 |
+
" \n",
|
| 113 |
+
" # ********************************\n",
|
| 114 |
+
" # Download FLEURS from huggingface\n",
|
| 115 |
+
" # ********************************\n",
|
| 116 |
+
" fleurs_asr = load_dataset(\"google/fleurs\", lang_dict[lang],cache_dir=cache_dir, trust_remote_code=True)\n",
|
| 117 |
+
"\n",
|
| 118 |
+
" for subparts in datasets:\n",
|
| 119 |
+
" \n",
|
| 120 |
+
" used_ID = []\n",
|
| 121 |
+
" Path(dataset_write_base+\"/\"+lang+\"/wavs/\"+subparts).mkdir(parents=True, exist_ok=True)\n",
|
| 122 |
+
" \n",
|
| 123 |
+
" # csv header\n",
|
| 124 |
+
" f = open(dataset_write_base+\"/\"+lang+\"/\"+subparts+\".csv\", \"w\")\n",
|
| 125 |
+
" f.write(\"ID,duration,wav,spk_id,wrd\\n\")\n",
|
| 126 |
+
"\n",
|
| 127 |
+
" for uid in tqdm(range(len(fleurs_asr[subparts]))):\n",
|
| 128 |
+
"\n",
|
| 129 |
+
" # ***************\n",
|
| 130 |
+
" # format CSV line\n",
|
| 131 |
+
" # ***************\n",
|
| 132 |
+
" text_id = lang+\"_\"+str(fleurs_asr[subparts][uid][\"id\"])\n",
|
| 133 |
+
" \n",
|
| 134 |
+
" # some ID are duplicated (same speaker, same transcription BUT different recording)\n",
|
| 135 |
+
" while(text_id in used_ID):\n",
|
| 136 |
+
" text_id += \"_bis\"\n",
|
| 137 |
+
" used_ID.append(text_id)\n",
|
| 138 |
+
"\n",
|
| 139 |
+
" duration = \"{:.3f}\".format(round(float(fleurs_asr[subparts][uid][\"num_samples\"])/float(fleurs_asr[subparts][uid][\"audio\"][\"sampling_rate\"]),3))\n",
|
| 140 |
+
" wav_path = \"/\".join([dataset_write_base, lang, \"wavs\",subparts, fleurs_asr[subparts][uid][\"audio\"][\"path\"].split('/')[-1]])\n",
|
| 141 |
+
" spk_id = \"spk_\" + text_id\n",
|
| 142 |
+
" # AC : \"pseudo-normalisation\" de cas marginaux -- TODO mieux\n",
|
| 143 |
+
" wrd = fleurs_asr[subparts][uid][\"transcription\"].replace(',','').replace('$',' $ ').replace('\"','').replace('”','').replace(' ',' ')\n",
|
| 144 |
+
"\n",
|
| 145 |
+
" # **************\n",
|
| 146 |
+
" # write CSV line\n",
|
| 147 |
+
" # **************\n",
|
| 148 |
+
" f.write(text_id+\",\"+duration+\",\"+wav_path+\",\"+spk_id+\",\"+wrd+\"\\n\") \n",
|
| 149 |
+
"\n",
|
| 150 |
+
" # *******************\n",
|
| 151 |
+
" # Move wav from cache\n",
|
| 152 |
+
" # *******************\n",
|
| 153 |
+
" previous_path = \"/\".join(fleurs_asr[subparts][uid][\"path\"].split('/')[:-1]) + \"/\" + fleurs_asr[subparts][uid][\"audio\"][\"path\"]\n",
|
| 154 |
+
" new_path = \"/\".join([dataset_write_base,lang,\"wavs\",subparts,fleurs_asr[subparts][uid][\"audio\"][\"path\"].split('/')[-1]])\n",
|
| 155 |
+
" shutil.move(previous_path,new_path)\n",
|
| 156 |
+
" \n",
|
| 157 |
+
" f.close()\n",
|
| 158 |
+
" print(\"--->\", lang, \"done\")"
|
| 159 |
+
]
|
| 160 |
+
},
|
| 161 |
+
{
|
| 162 |
+
"cell_type": "markdown",
|
| 163 |
+
"id": "4c32e369-f0f9-4695-8c9a-aa3a9de7bf7b",
|
| 164 |
+
"metadata": {},
|
| 165 |
+
"source": [
|
| 166 |
+
"# Recette ASR"
|
| 167 |
+
]
|
| 168 |
+
},
|
| 169 |
+
{
|
| 170 |
+
"cell_type": "markdown",
|
| 171 |
+
"id": "77fb2c55-3f8c-4f34-81f0-ad48a632e010",
|
| 172 |
+
"metadata": {
|
| 173 |
+
"jp-MarkdownHeadingCollapsed": true
|
| 174 |
+
},
|
| 175 |
+
"source": [
|
| 176 |
+
"## 1. Installation des dépendances"
|
| 177 |
+
]
|
| 178 |
+
},
|
| 179 |
+
{
|
| 180 |
+
"cell_type": "code",
|
| 181 |
+
"execution_count": null,
|
| 182 |
+
"id": "fbe25635-e765-480c-8416-c48a31ee6140",
|
| 183 |
+
"metadata": {},
|
| 184 |
+
"outputs": [],
|
| 185 |
+
"source": [
|
| 186 |
+
"pip install torch==2.2.2 torchaudio==2.2.2 torchvision==0.17.2 speechbrain transformers jdc"
|
| 187 |
+
]
|
| 188 |
+
},
|
| 189 |
+
{
|
| 190 |
+
"cell_type": "markdown",
|
| 191 |
+
"id": "6acf1f8c-2cf3-4c9c-8a45-e2580ecbee27",
|
| 192 |
+
"metadata": {},
|
| 193 |
+
"source": [
|
| 194 |
+
"## 2. Mise en place de la recette Speechbrain -- class Brain"
|
| 195 |
+
]
|
| 196 |
+
},
|
| 197 |
+
{
|
| 198 |
+
"cell_type": "markdown",
|
| 199 |
+
"id": "d5e8884d-3542-40ff-a454-597078fcf97c",
|
| 200 |
+
"metadata": {},
|
| 201 |
+
"source": [
|
| 202 |
+
"### 2.1 Imports & logger"
|
| 203 |
+
]
|
| 204 |
+
},
|
| 205 |
+
{
|
| 206 |
+
"cell_type": "code",
|
| 207 |
+
"execution_count": null,
|
| 208 |
+
"id": "6c677f9f-6abe-423f-b4dd-fdf5ded357cd",
|
| 209 |
+
"metadata": {},
|
| 210 |
+
"outputs": [],
|
| 211 |
+
"source": [
|
| 212 |
+
"import logging\n",
|
| 213 |
+
"import os\n",
|
| 214 |
+
"import sys\n",
|
| 215 |
+
"from pathlib import Path\n",
|
| 216 |
+
"\n",
|
| 217 |
+
"import torch\n",
|
| 218 |
+
"from hyperpyyaml import load_hyperpyyaml\n",
|
| 219 |
+
"\n",
|
| 220 |
+
"import speechbrain as sb\n",
|
| 221 |
+
"from speechbrain.utils.distributed import if_main_process, run_on_main\n",
|
| 222 |
+
"\n",
|
| 223 |
+
"import jdc\n",
|
| 224 |
+
"\n",
|
| 225 |
+
"logger = logging.getLogger(__name__)"
|
| 226 |
+
]
|
| 227 |
+
},
|
| 228 |
+
{
|
| 229 |
+
"cell_type": "markdown",
|
| 230 |
+
"id": "9698bb92-16ad-4b61-8938-c74b62ee93b2",
|
| 231 |
+
"metadata": {},
|
| 232 |
+
"source": [
|
| 233 |
+
"### 2.2 Création de notre classe héritant de la classe brain"
|
| 234 |
+
]
|
| 235 |
+
},
|
| 236 |
+
{
|
| 237 |
+
"cell_type": "code",
|
| 238 |
+
"execution_count": null,
|
| 239 |
+
"id": "7c7cd624-6249-449b-8ee9-d4a73b7b3301",
|
| 240 |
+
"metadata": {},
|
| 241 |
+
"outputs": [],
|
| 242 |
+
"source": [
|
| 243 |
+
"# Define training procedure\n",
|
| 244 |
+
"class MY_SSA_ASR(sb.Brain):\n",
|
| 245 |
+
" print(\"\")\n",
|
| 246 |
+
" # define here"
|
| 247 |
+
]
|
| 248 |
+
},
|
| 249 |
+
{
|
| 250 |
+
"cell_type": "markdown",
|
| 251 |
+
"id": "ecf31c9c-15dd-4428-aa10-b3cc5e127f0d",
|
| 252 |
+
"metadata": {},
|
| 253 |
+
"source": [
|
| 254 |
+
"### 2.3 Définition de la fonction forward "
|
| 255 |
+
]
|
| 256 |
+
},
|
| 257 |
+
{
|
| 258 |
+
"cell_type": "code",
|
| 259 |
+
"execution_count": null,
|
| 260 |
+
"id": "4368b488-b9d8-49ff-8ce3-78a12d46be83",
|
| 261 |
+
"metadata": {},
|
| 262 |
+
"outputs": [],
|
| 263 |
+
"source": [
|
| 264 |
+
"%%add_to MY_SSA_ASR\n",
|
| 265 |
+
"def compute_forward(self, batch, stage):\n",
|
| 266 |
+
" \"\"\"Forward computations from the waveform batches to the output probabilities.\"\"\"\n",
|
| 267 |
+
" batch = batch.to(self.device)\n",
|
| 268 |
+
" wavs, wav_lens = batch.sig\n",
|
| 269 |
+
" wavs, wav_lens = wavs.to(self.device), wav_lens.to(self.device)\n",
|
| 270 |
+
"\n",
|
| 271 |
+
" # Downsample the inputs if specified\n",
|
| 272 |
+
" if hasattr(self.modules, \"downsampler\"):\n",
|
| 273 |
+
" wavs = self.modules.downsampler(wavs)\n",
|
| 274 |
+
"\n",
|
| 275 |
+
" # Add waveform augmentation if specified.\n",
|
| 276 |
+
" if stage == sb.Stage.TRAIN and hasattr(self.hparams, \"wav_augment\"):\n",
|
| 277 |
+
" wavs, wav_lens = self.hparams.wav_augment(wavs, wav_lens)\n",
|
| 278 |
+
"\n",
|
| 279 |
+
" # Forward pass\n",
|
| 280 |
+
" feats = self.modules.hubert(wavs, wav_lens)\n",
|
| 281 |
+
" x = self.modules.top_lin(feats)\n",
|
| 282 |
+
"\n",
|
| 283 |
+
" # Compute outputs\n",
|
| 284 |
+
" logits = self.modules.ctc_lin(x)\n",
|
| 285 |
+
" p_ctc = self.hparams.log_softmax(logits)\n",
|
| 286 |
+
"\n",
|
| 287 |
+
"\n",
|
| 288 |
+
" p_tokens = None\n",
|
| 289 |
+
" if stage == sb.Stage.VALID:\n",
|
| 290 |
+
" p_tokens = sb.decoders.ctc_greedy_decode(p_ctc, wav_lens, blank_id=self.hparams.blank_index)\n",
|
| 291 |
+
"\n",
|
| 292 |
+
" elif stage == sb.Stage.TEST:\n",
|
| 293 |
+
" p_tokens = test_searcher(p_ctc, wav_lens)\n",
|
| 294 |
+
"\n",
|
| 295 |
+
" candidates = []\n",
|
| 296 |
+
" scores = []\n",
|
| 297 |
+
"\n",
|
| 298 |
+
" for batch in p_tokens:\n",
|
| 299 |
+
" candidates.append([hyp.text for hyp in batch])\n",
|
| 300 |
+
" scores.append([hyp.score for hyp in batch])\n",
|
| 301 |
+
"\n",
|
| 302 |
+
" if hasattr(self.hparams, \"rescorer\"):\n",
|
| 303 |
+
" p_tokens, _ = self.hparams.rescorer.rescore(candidates, scores)\n",
|
| 304 |
+
"\n",
|
| 305 |
+
" return p_ctc, wav_lens, p_tokens\n"
|
| 306 |
+
]
|
| 307 |
+
},
|
| 308 |
+
{
|
| 309 |
+
"cell_type": "markdown",
|
| 310 |
+
"id": "f0052b79-5a27-4c4c-8601-7ab064e8c951",
|
| 311 |
+
"metadata": {},
|
| 312 |
+
"source": [
|
| 313 |
+
"### 2.4 Définition de la fonction objectives"
|
| 314 |
+
]
|
| 315 |
+
},
|
| 316 |
+
{
|
| 317 |
+
"cell_type": "code",
|
| 318 |
+
"execution_count": null,
|
| 319 |
+
"id": "3608aee8-c9c3-4e34-98bc-667513fa7f7b",
|
| 320 |
+
"metadata": {},
|
| 321 |
+
"outputs": [],
|
| 322 |
+
"source": [
|
| 323 |
+
"%%add_to MY_SSA_ASR\n",
|
| 324 |
+
"def compute_objectives(self, predictions, batch, stage):\n",
|
| 325 |
+
" \"\"\"Computes the loss (CTC+NLL) given predictions and targets.\"\"\"\n",
|
| 326 |
+
"\n",
|
| 327 |
+
" p_ctc, wav_lens, predicted_tokens = predictions\n",
|
| 328 |
+
"\n",
|
| 329 |
+
" ids = batch.id\n",
|
| 330 |
+
" tokens, tokens_lens = batch.tokens\n",
|
| 331 |
+
"\n",
|
| 332 |
+
" # Labels must be extended if parallel augmentation or concatenated\n",
|
| 333 |
+
" # augmentation was performed on the input (increasing the time dimension)\n",
|
| 334 |
+
" if stage == sb.Stage.TRAIN and hasattr(self.hparams, \"wav_augment\"):\n",
|
| 335 |
+
" (tokens, tokens_lens) = self.hparams.wav_augment.replicate_multiple_labels(tokens, tokens_lens)\n",
|
| 336 |
+
"\n",
|
| 337 |
+
"\n",
|
| 338 |
+
"\n",
|
| 339 |
+
" # Compute loss\n",
|
| 340 |
+
" loss = self.hparams.ctc_cost(p_ctc, tokens, wav_lens, tokens_lens)\n",
|
| 341 |
+
"\n",
|
| 342 |
+
" if stage == sb.Stage.VALID:\n",
|
| 343 |
+
" # Decode token terms to words\n",
|
| 344 |
+
" predicted_words = [\"\".join(self.tokenizer.decode_ndim(utt_seq)).split(\" \") for utt_seq in predicted_tokens]\n",
|
| 345 |
+
" \n",
|
| 346 |
+
" elif stage == sb.Stage.TEST:\n",
|
| 347 |
+
" predicted_words = [hyp[0].text.split(\" \") for hyp in predicted_tokens]\n",
|
| 348 |
+
"\n",
|
| 349 |
+
" if stage != sb.Stage.TRAIN:\n",
|
| 350 |
+
" target_words = [wrd.split(\" \") for wrd in batch.wrd]\n",
|
| 351 |
+
" self.wer_metric.append(ids, predicted_words, target_words)\n",
|
| 352 |
+
" self.cer_metric.append(ids, predicted_words, target_words)\n",
|
| 353 |
+
"\n",
|
| 354 |
+
" return loss\n"
|
| 355 |
+
]
|
| 356 |
+
},
|
| 357 |
+
{
|
| 358 |
+
"cell_type": "markdown",
|
| 359 |
+
"id": "9a514c50-89ad-41cb-882a-23daf829a538",
|
| 360 |
+
"metadata": {},
|
| 361 |
+
"source": [
|
| 362 |
+
"### 2.5 définition du comportement au début d'un \"stage\""
|
| 363 |
+
]
|
| 364 |
+
},
|
| 365 |
+
{
|
| 366 |
+
"cell_type": "code",
|
| 367 |
+
"execution_count": null,
|
| 368 |
+
"id": "609814ce-3ef0-4818-a70f-cadc293c9dd2",
|
| 369 |
+
"metadata": {},
|
| 370 |
+
"outputs": [],
|
| 371 |
+
"source": [
|
| 372 |
+
"%%add_to MY_SSA_ASR\n",
|
| 373 |
+
"# stage gestion\n",
|
| 374 |
+
"def on_stage_start(self, stage, epoch):\n",
|
| 375 |
+
" \"\"\"Gets called at the beginning of each epoch\"\"\"\n",
|
| 376 |
+
" if stage != sb.Stage.TRAIN:\n",
|
| 377 |
+
" self.cer_metric = self.hparams.cer_computer()\n",
|
| 378 |
+
" self.wer_metric = self.hparams.error_rate_computer()\n",
|
| 379 |
+
"\n",
|
| 380 |
+
" if stage == sb.Stage.TEST:\n",
|
| 381 |
+
" if hasattr(self.hparams, \"rescorer\"):\n",
|
| 382 |
+
" self.hparams.rescorer.move_rescorers_to_device()\n",
|
| 383 |
+
"\n"
|
| 384 |
+
]
|
| 385 |
+
},
|
| 386 |
+
{
|
| 387 |
+
"cell_type": "markdown",
|
| 388 |
+
"id": "55929209-c94a-4f8b-8f2e-9dd5d9de8be9",
|
| 389 |
+
"metadata": {},
|
| 390 |
+
"source": [
|
| 391 |
+
"### 2.6 définition du comportement à la fin d'un \"stage\""
|
| 392 |
+
]
|
| 393 |
+
},
|
| 394 |
+
{
|
| 395 |
+
"cell_type": "code",
|
| 396 |
+
"execution_count": null,
|
| 397 |
+
"id": "8f297542-10d5-47bf-9938-c141f5a99ab8",
|
| 398 |
+
"metadata": {},
|
| 399 |
+
"outputs": [],
|
| 400 |
+
"source": [
|
| 401 |
+
"%%add_to MY_SSA_ASR\n",
|
| 402 |
+
"def on_stage_end(self, stage, stage_loss, epoch):\n",
|
| 403 |
+
" \"\"\"Gets called at the end of an epoch.\"\"\"\n",
|
| 404 |
+
" # Compute/store important stats\n",
|
| 405 |
+
" stage_stats = {\"loss\": stage_loss}\n",
|
| 406 |
+
" if stage == sb.Stage.TRAIN:\n",
|
| 407 |
+
" self.train_stats = stage_stats\n",
|
| 408 |
+
" else:\n",
|
| 409 |
+
" stage_stats[\"CER\"] = self.cer_metric.summarize(\"error_rate\")\n",
|
| 410 |
+
" stage_stats[\"WER\"] = self.wer_metric.summarize(\"error_rate\")\n",
|
| 411 |
+
"\n",
|
| 412 |
+
" # Perform end-of-iteration things, like annealing, logging, etc.\n",
|
| 413 |
+
" if stage == sb.Stage.VALID:\n",
|
| 414 |
+
" # *******************************\n",
|
| 415 |
+
" # Anneal and update Learning Rate\n",
|
| 416 |
+
" # *******************************\n",
|
| 417 |
+
" old_lr_model, new_lr_model = self.hparams.lr_annealing_model(stage_stats[\"loss\"])\n",
|
| 418 |
+
" old_lr_hubert, new_lr_hubert = self.hparams.lr_annealing_hubert(stage_stats[\"loss\"])\n",
|
| 419 |
+
" sb.nnet.schedulers.update_learning_rate(self.model_optimizer, new_lr_model)\n",
|
| 420 |
+
" sb.nnet.schedulers.update_learning_rate(self.hubert_optimizer, new_lr_hubert)\n",
|
| 421 |
+
"\n",
|
| 422 |
+
" # *****************\n",
|
| 423 |
+
" # Logs informations\n",
|
| 424 |
+
" # *****************\n",
|
| 425 |
+
" self.hparams.train_logger.log_stats(stats_meta={\"epoch\": epoch, \"lr_model\": old_lr_model, \"lr_hubert\": old_lr_hubert}, train_stats=self.train_stats, valid_stats=stage_stats)\n",
|
| 426 |
+
"\n",
|
| 427 |
+
" # ***************\n",
|
| 428 |
+
" # Save checkpoint\n",
|
| 429 |
+
" # ***************\n",
|
| 430 |
+
" self.checkpointer.save_and_keep_only(meta={\"WER\": stage_stats[\"WER\"]},min_keys=[\"WER\"])\n",
|
| 431 |
+
"\n",
|
| 432 |
+
" elif stage == sb.Stage.TEST:\n",
|
| 433 |
+
" self.hparams.train_logger.log_stats(stats_meta={\"Epoch loaded\": self.hparams.epoch_counter.current},test_stats=stage_stats)\n",
|
| 434 |
+
" if if_main_process():\n",
|
| 435 |
+
" with open(self.hparams.test_wer_file, \"w\") as w:\n",
|
| 436 |
+
" self.wer_metric.write_stats(w)\n"
|
| 437 |
+
]
|
| 438 |
+
},
|
| 439 |
+
{
|
| 440 |
+
"cell_type": "markdown",
|
| 441 |
+
"id": "0c656457-6b61-4316-8199-70021f92babf",
|
| 442 |
+
"metadata": {},
|
| 443 |
+
"source": [
|
| 444 |
+
"### 2.7 définition de l'initialisation des optimizers"
|
| 445 |
+
]
|
| 446 |
+
},
|
| 447 |
+
{
|
| 448 |
+
"cell_type": "code",
|
| 449 |
+
"execution_count": null,
|
| 450 |
+
"id": "da8d9cb5-c5ad-4e78-83d3-e129e138a741",
|
| 451 |
+
"metadata": {},
|
| 452 |
+
"outputs": [],
|
| 453 |
+
"source": [
|
| 454 |
+
"%%add_to MY_SSA_ASR\n",
|
| 455 |
+
"def init_optimizers(self):\n",
|
| 456 |
+
" \"Initializes the hubert optimizer and model optimizer\"\n",
|
| 457 |
+
" self.hubert_optimizer = self.hparams.hubert_opt_class(self.modules.hubert.parameters())\n",
|
| 458 |
+
" self.model_optimizer = self.hparams.model_opt_class(self.hparams.model.parameters())\n",
|
| 459 |
+
"\n",
|
| 460 |
+
" # save the optimizers in a dictionary\n",
|
| 461 |
+
" # the key will be used in `freeze_optimizers()`\n",
|
| 462 |
+
" self.optimizers_dict = {\"model_optimizer\": self.model_optimizer}\n",
|
| 463 |
+
" if not self.hparams.freeze_hubert:\n",
|
| 464 |
+
" self.optimizers_dict[\"hubert_optimizer\"] = self.hubert_optimizer\n",
|
| 465 |
+
"\n",
|
| 466 |
+
" if self.checkpointer is not None:\n",
|
| 467 |
+
" self.checkpointer.add_recoverable(\"hubert_opt\", self.hubert_optimizer)\n",
|
| 468 |
+
" self.checkpointer.add_recoverable(\"model_opt\", self.model_optimizer)\n"
|
| 469 |
+
]
|
| 470 |
+
},
|
| 471 |
+
{
|
| 472 |
+
"cell_type": "markdown",
|
| 473 |
+
"id": "cf2e730c-2faa-41f2-b98d-e5fbb2305cc2",
|
| 474 |
+
"metadata": {},
|
| 475 |
+
"source": [
|
| 476 |
+
"## 3 Définition de la lecture des datasets"
|
| 477 |
+
]
|
| 478 |
+
},
|
| 479 |
+
{
|
| 480 |
+
"cell_type": "code",
|
| 481 |
+
"execution_count": null,
|
| 482 |
+
"id": "c5e667f7-6269-4b49-88bb-5e431762c8fe",
|
| 483 |
+
"metadata": {},
|
| 484 |
+
"outputs": [],
|
| 485 |
+
"source": [
|
| 486 |
+
"def dataio_prepare(hparams):\n",
|
| 487 |
+
" \"\"\"This function prepares the datasets to be used in the brain class.\n",
|
| 488 |
+
" It also defines the data processing pipeline through user-defined functions.\n",
|
| 489 |
+
" \"\"\"\n",
|
| 490 |
+
"\n",
|
| 491 |
+
" # **************\n",
|
| 492 |
+
" # Load CSV files\n",
|
| 493 |
+
" # **************\n",
|
| 494 |
+
" data_folder = hparams[\"data_folder\"]\n",
|
| 495 |
+
"\n",
|
| 496 |
+
" train_data = sb.dataio.dataset.DynamicItemDataset.from_csv(csv_path=hparams[\"train_csv\"],replacements={\"data_root\": data_folder})\n",
|
| 497 |
+
" # we sort training data to speed up training and get better results.\n",
|
| 498 |
+
" train_data = train_data.filtered_sorted(sort_key=\"duration\")\n",
|
| 499 |
+
" hparams[\"train_dataloader_opts\"][\"shuffle\"] = False # when sorting do not shuffle in dataloader ! otherwise is pointless\n",
|
| 500 |
+
"\n",
|
| 501 |
+
" valid_data = sb.dataio.dataset.DynamicItemDataset.from_csv(csv_path=hparams[\"valid_csv\"],replacements={\"data_root\": data_folder})\n",
|
| 502 |
+
" valid_data = valid_data.filtered_sorted(sort_key=\"duration\")\n",
|
| 503 |
+
"\n",
|
| 504 |
+
" # test is separate\n",
|
| 505 |
+
" test_datasets = {}\n",
|
| 506 |
+
" for csv_file in hparams[\"test_csv\"]:\n",
|
| 507 |
+
" name = Path(csv_file).stem\n",
|
| 508 |
+
" test_datasets[name] = sb.dataio.dataset.DynamicItemDataset.from_csv(csv_path=csv_file, replacements={\"data_root\": data_folder})\n",
|
| 509 |
+
" test_datasets[name] = test_datasets[name].filtered_sorted(sort_key=\"duration\")\n",
|
| 510 |
+
"\n",
|
| 511 |
+
" datasets = [train_data, valid_data] + [i for k, i in test_datasets.items()]\n",
|
| 512 |
+
"\n",
|
| 513 |
+
" # *************************\n",
|
| 514 |
+
" # 2. Define audio pipeline:\n",
|
| 515 |
+
" # *************************\n",
|
| 516 |
+
" @sb.utils.data_pipeline.takes(\"wav\")\n",
|
| 517 |
+
" @sb.utils.data_pipeline.provides(\"sig\")\n",
|
| 518 |
+
" def audio_pipeline(wav):\n",
|
| 519 |
+
" sig = sb.dataio.dataio.read_audio(wav)\n",
|
| 520 |
+
" return sig\n",
|
| 521 |
+
"\n",
|
| 522 |
+
" sb.dataio.dataset.add_dynamic_item(datasets, audio_pipeline)\n",
|
| 523 |
+
"\n",
|
| 524 |
+
" # ************************\n",
|
| 525 |
+
" # 3. Define text pipeline:\n",
|
| 526 |
+
" # ************************\n",
|
| 527 |
+
" label_encoder = sb.dataio.encoder.CTCTextEncoder()\n",
|
| 528 |
+
" \n",
|
| 529 |
+
" @sb.utils.data_pipeline.takes(\"wrd\")\n",
|
| 530 |
+
" @sb.utils.data_pipeline.provides(\"wrd\", \"char_list\", \"tokens_list\", \"tokens\")\n",
|
| 531 |
+
" def text_pipeline(wrd):\n",
|
| 532 |
+
" yield wrd\n",
|
| 533 |
+
" char_list = list(wrd)\n",
|
| 534 |
+
" yield char_list\n",
|
| 535 |
+
" tokens_list = label_encoder.encode_sequence(char_list)\n",
|
| 536 |
+
" yield tokens_list\n",
|
| 537 |
+
" tokens = torch.LongTensor(tokens_list)\n",
|
| 538 |
+
" yield tokens\n",
|
| 539 |
+
"\n",
|
| 540 |
+
" sb.dataio.dataset.add_dynamic_item(datasets, text_pipeline)\n",
|
| 541 |
+
"\n",
|
| 542 |
+
"\n",
|
| 543 |
+
" # *******************************\n",
|
| 544 |
+
" # 4. Create or load label encoder\n",
|
| 545 |
+
" # *******************************\n",
|
| 546 |
+
" lab_enc_file = os.path.join(hparams[\"save_folder\"], \"label_encoder.txt\")\n",
|
| 547 |
+
" special_labels = {\"blank_label\": hparams[\"blank_index\"]}\n",
|
| 548 |
+
" label_encoder.add_unk()\n",
|
| 549 |
+
" label_encoder.load_or_create(path=lab_enc_file, from_didatasets=[train_data], output_key=\"char_list\", special_labels=special_labels, sequence_input=True)\n",
|
| 550 |
+
"\n",
|
| 551 |
+
" # **************\n",
|
| 552 |
+
" # 5. Set output:\n",
|
| 553 |
+
" # **************\n",
|
| 554 |
+
" sb.dataio.dataset.set_output_keys(datasets,[\"id\", \"sig\", \"wrd\", \"char_list\", \"tokens\"],)\n",
|
| 555 |
+
"\n",
|
| 556 |
+
" return train_data, valid_data, test_datasets, label_encoder\n"
|
| 557 |
+
]
|
| 558 |
+
},
|
| 559 |
+
{
|
| 560 |
+
"cell_type": "markdown",
|
| 561 |
+
"id": "e97c4f20-6951-4d12-8e17-9eb818a52bb1",
|
| 562 |
+
"metadata": {},
|
| 563 |
+
"source": [
|
| 564 |
+
"## 4. Utilisation de la recette Créée"
|
| 565 |
+
]
|
| 566 |
+
},
|
| 567 |
+
{
|
| 568 |
+
"cell_type": "markdown",
|
| 569 |
+
"id": "76b72148-6bd0-48bd-ad40-cb6f8bfd34c0",
|
| 570 |
+
"metadata": {},
|
| 571 |
+
"source": [
|
| 572 |
+
"### 4.1 Préparation au lancement"
|
| 573 |
+
]
|
| 574 |
+
},
|
| 575 |
+
{
|
| 576 |
+
"cell_type": "code",
|
| 577 |
+
"execution_count": null,
|
| 578 |
+
"id": "d47ec39a-5562-4a63-8243-656c9235b7a2",
|
| 579 |
+
"metadata": {},
|
| 580 |
+
"outputs": [],
|
| 581 |
+
"source": [
|
| 582 |
+
"hparams_file, run_opts, overrides = sb.parse_arguments([\"PATH_TO_YOUR_FOLDER/ASR_FLEURS-swahili_hf.yaml\"])\n",
|
| 583 |
+
"# create ddp_group with the right communication protocol\n",
|
| 584 |
+
"sb.utils.distributed.ddp_init_group(run_opts)\n",
|
| 585 |
+
"\n",
|
| 586 |
+
"# ***********************************\n",
|
| 587 |
+
"# Chargement du fichier de paramètres\n",
|
| 588 |
+
"# ***********************************\n",
|
| 589 |
+
"with open(hparams_file) as fin:\n",
|
| 590 |
+
" hparams = load_hyperpyyaml(fin, overrides)\n",
|
| 591 |
+
"\n",
|
| 592 |
+
"# ***************************\n",
|
| 593 |
+
"# Create experiment directory\n",
|
| 594 |
+
"# ***************************\n",
|
| 595 |
+
"sb.create_experiment_directory(experiment_directory=hparams[\"output_folder\"], hyperparams_to_save=hparams_file, overrides=overrides)\n",
|
| 596 |
+
"\n",
|
| 597 |
+
"# ***************************\n",
|
| 598 |
+
"# Create the datasets objects\n",
|
| 599 |
+
"# ***************************\n",
|
| 600 |
+
"train_data, valid_data, test_datasets, label_encoder = dataio_prepare(hparams)\n",
|
| 601 |
+
"\n",
|
| 602 |
+
"# **********************\n",
|
| 603 |
+
"# Trainer initialization\n",
|
| 604 |
+
"# **********************\n",
|
| 605 |
+
"asr_brain = MY_SSA_ASR(modules=hparams[\"modules\"], hparams=hparams, run_opts=run_opts, checkpointer=hparams[\"checkpointer\"])\n",
|
| 606 |
+
"asr_brain.tokenizer = label_encoder"
|
| 607 |
+
]
|
| 608 |
+
},
|
| 609 |
+
{
|
| 610 |
+
"cell_type": "markdown",
|
| 611 |
+
"id": "62ae72eb-416c-4ef0-9348-d02bbc268fbd",
|
| 612 |
+
"metadata": {},
|
| 613 |
+
"source": [
|
| 614 |
+
"### 4.2 Apprentissage du modèle"
|
| 615 |
+
]
|
| 616 |
+
},
|
| 617 |
+
{
|
| 618 |
+
"cell_type": "code",
|
| 619 |
+
"execution_count": null,
|
| 620 |
+
"id": "d3dd30ee-89c0-40ea-a9d2-0e2b9d8c8686",
|
| 621 |
+
"metadata": {},
|
| 622 |
+
"outputs": [],
|
| 623 |
+
"source": [
|
| 624 |
+
"# ********\n",
|
| 625 |
+
"# Training\n",
|
| 626 |
+
"# ********\n",
|
| 627 |
+
"asr_brain.fit(asr_brain.hparams.epoch_counter, \n",
|
| 628 |
+
" train_data, valid_data, \n",
|
| 629 |
+
" train_loader_kwargs=hparams[\"train_dataloader_opts\"], \n",
|
| 630 |
+
" valid_loader_kwargs=hparams[\"valid_dataloader_opts\"],\n",
|
| 631 |
+
" )\n",
|
| 632 |
+
"\n"
|
| 633 |
+
]
|
| 634 |
+
},
|
| 635 |
+
{
|
| 636 |
+
"cell_type": "markdown",
|
| 637 |
+
"id": "1b55af4c-c544-45ff-8435-58226218328f",
|
| 638 |
+
"metadata": {},
|
| 639 |
+
"source": [
|
| 640 |
+
"### 4.3 Test du Modèle"
|
| 641 |
+
]
|
| 642 |
+
},
|
| 643 |
+
{
|
| 644 |
+
"cell_type": "code",
|
| 645 |
+
"execution_count": null,
|
| 646 |
+
"id": "9cef9011-1a3e-43a4-ab16-8cfb2b57dbd9",
|
| 647 |
+
"metadata": {},
|
| 648 |
+
"outputs": [],
|
| 649 |
+
"source": [
|
| 650 |
+
"# *******\n",
|
| 651 |
+
"# Testing\n",
|
| 652 |
+
"# *******\n",
|
| 653 |
+
"if not os.path.exists(hparams[\"output_wer_folder\"]):\n",
|
| 654 |
+
" os.makedirs(hparams[\"output_wer_folder\"])\n",
|
| 655 |
+
"\n",
|
| 656 |
+
"from speechbrain.decoders.ctc import CTCBeamSearcher\n",
|
| 657 |
+
"\n",
|
| 658 |
+
"ind2lab = label_encoder.ind2lab\n",
|
| 659 |
+
"vocab_list = [ind2lab[x] for x in range(len(ind2lab))]\n",
|
| 660 |
+
"test_searcher = CTCBeamSearcher(**hparams[\"test_beam_search\"], vocab_list=vocab_list)\n",
|
| 661 |
+
"\n",
|
| 662 |
+
"for k in test_datasets.keys(): # Allow multiple evaluation throught list of test sets\n",
|
| 663 |
+
" asr_brain.hparams.test_wer_file = os.path.join(hparams[\"output_wer_folder\"], f\"wer_{k}.txt\")\n",
|
| 664 |
+
" asr_brain.evaluate(test_datasets[k], test_loader_kwargs=hparams[\"test_dataloader_opts\"], min_key=\"WER\")\n"
|
| 665 |
+
]
|
| 666 |
+
}
|
| 667 |
+
],
|
| 668 |
+
"metadata": {
|
| 669 |
+
"kernelspec": {
|
| 670 |
+
"display_name": "Python 3 (ipykernel)",
|
| 671 |
+
"language": "python",
|
| 672 |
+
"name": "python3"
|
| 673 |
+
},
|
| 674 |
+
"language_info": {
|
| 675 |
+
"codemirror_mode": {
|
| 676 |
+
"name": "ipython",
|
| 677 |
+
"version": 3
|
| 678 |
+
},
|
| 679 |
+
"file_extension": ".py",
|
| 680 |
+
"mimetype": "text/x-python",
|
| 681 |
+
"name": "python",
|
| 682 |
+
"nbconvert_exporter": "python",
|
| 683 |
+
"pygments_lexer": "ipython3",
|
| 684 |
+
"version": "3.10.14"
|
| 685 |
+
}
|
| 686 |
+
},
|
| 687 |
+
"nbformat": 4,
|
| 688 |
+
"nbformat_minor": 5
|
| 689 |
+
}
|