Create modeling_csumlm.py
Browse files- modeling_csumlm.py +94 -0
modeling_csumlm.py
ADDED
|
@@ -0,0 +1,94 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from typing import Optional, Tuple, Union
|
| 2 |
+
|
| 3 |
+
import torch
|
| 4 |
+
import torch.nn as nn
|
| 5 |
+
from transformers import PreTrainedModel, PreTrainedEncoder, PreTrainedDecoder
|
| 6 |
+
from transformers.modeling_outputs import BaseModelOutput, Seq2SeqLMOutput
|
| 7 |
+
from transformers.utils import logging
|
| 8 |
+
|
| 9 |
+
logger = logging.get_logger(__name__)
|
| 10 |
+
|
| 11 |
+
class CSUMLMEncoder(PreTrainedEncoder):
|
| 12 |
+
def __init__(self, config):
|
| 13 |
+
super().__init__(config)
|
| 14 |
+
# Define the text encoder, image encoder, and audio encoder architectures
|
| 15 |
+
# ...
|
| 16 |
+
|
| 17 |
+
def forward(
|
| 18 |
+
self,
|
| 19 |
+
input_ids=None,
|
| 20 |
+
attention_mask=None,
|
| 21 |
+
token_type_ids=None,
|
| 22 |
+
position_ids=None,
|
| 23 |
+
head_mask=None,
|
| 24 |
+
inputs_embeds=None,
|
| 25 |
+
encoder_hidden_states=None,
|
| 26 |
+
encoder_attention_mask=None,
|
| 27 |
+
past_key_values=None,
|
| 28 |
+
use_cache=None,
|
| 29 |
+
output_attentions=None,
|
| 30 |
+
output_hidden_states=None,
|
| 31 |
+
return_dict=None,
|
| 32 |
+
):
|
| 33 |
+
# Implement the forward pass for the encoder
|
| 34 |
+
# ...
|
| 35 |
+
return encoder_outputs
|
| 36 |
+
|
| 37 |
+
class CSUMLMDecoder(PreTrainedDecoder):
|
| 38 |
+
def __init__(self, config):
|
| 39 |
+
super().__init__(config)
|
| 40 |
+
# Define the decoder architecture
|
| 41 |
+
# ...
|
| 42 |
+
|
| 43 |
+
def forward(
|
| 44 |
+
self,
|
| 45 |
+
input_ids=None,
|
| 46 |
+
attention_mask=None,
|
| 47 |
+
encoder_hidden_states=None,
|
| 48 |
+
encoder_attention_mask=None,
|
| 49 |
+
head_mask=None,
|
| 50 |
+
cross_attn_head_mask=None,
|
| 51 |
+
past_key_values=None,
|
| 52 |
+
inputs_embeds=None,
|
| 53 |
+
use_cache=None,
|
| 54 |
+
output_attentions=None,
|
| 55 |
+
output_hidden_states=None,
|
| 56 |
+
return_dict=None,
|
| 57 |
+
):
|
| 58 |
+
# Implement the forward pass for the decoder
|
| 59 |
+
# ...
|
| 60 |
+
return decoder_outputs
|
| 61 |
+
|
| 62 |
+
class CSUMLMModel(PreTrainedModel):
|
| 63 |
+
def __init__(self, config):
|
| 64 |
+
super().__init__(config)
|
| 65 |
+
self.encoder = CSUMLMEncoder(config)
|
| 66 |
+
self.decoder = CSUMLMDecoder(config)
|
| 67 |
+
self.multimodal_fusion = MultimodalFusion(config)
|
| 68 |
+
# Initialize other components (e.g., attention mechanism, belief desire intent tree)
|
| 69 |
+
# ...
|
| 70 |
+
|
| 71 |
+
def forward(
|
| 72 |
+
self,
|
| 73 |
+
input_ids=None,
|
| 74 |
+
attention_mask=None,
|
| 75 |
+
decoder_input_ids=None,
|
| 76 |
+
decoder_attention_mask=None,
|
| 77 |
+
head_mask=None,
|
| 78 |
+
decoder_head_mask=None,
|
| 79 |
+
cross_attn_head_mask=None,
|
| 80 |
+
encoder_outputs=None,
|
| 81 |
+
past_key_values=None,
|
| 82 |
+
inputs_embeds=None,
|
| 83 |
+
decoder_inputs_embeds=None,
|
| 84 |
+
use_cache=None,
|
| 85 |
+
output_attentions=None,
|
| 86 |
+
output_hidden_states=None,
|
| 87 |
+
return_dict=None,
|
| 88 |
+
):
|
| 89 |
+
# Implement the forward pass for the CSUMLM model
|
| 90 |
+
# ...
|
| 91 |
+
return output
|
| 92 |
+
|
| 93 |
+
# Register the custom model with Hugging Face Transformers
|
| 94 |
+
CSUMLMModel.register_for_auto_class()
|