Update README.md
Browse files
README.md
CHANGED
|
@@ -1,4 +1,5 @@
|
|
| 1 |
---
|
|
|
|
| 2 |
language:
|
| 3 |
- en
|
| 4 |
tags:
|
|
@@ -25,37 +26,106 @@ model-index:
|
|
| 25 |
value: 0.91284
|
| 26 |
---
|
| 27 |
|
| 28 |
-
|
| 29 |
-
should probably proofread and complete it, then remove this comment. -->
|
| 30 |
|
| 31 |
-
|
|
|
|
| 32 |
|
| 33 |
-
|
|
|
|
|
|
|
| 34 |
It achieves the following results on the evaluation set:
|
| 35 |
-
- Torch accuracy: 0.9128
|
| 36 |
-
- OpenVINO IR accuracy: 0.9128
|
| 37 |
-
- Sparsity in transformer block linear layers: 0.80
|
|
|
|
|
|
|
|
|
|
|
|
|
| 38 |
|
| 39 |
-
|
| 40 |
|
| 41 |
```
|
| 42 |
-
|
| 43 |
-
|
| 44 |
-
|
| 45 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 46 |
```
|
| 47 |
|
| 48 |
-
|
| 49 |
|
| 50 |
-
|
| 51 |
|
|
|
|
| 52 |
|
| 53 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 54 |
|
| 55 |
-
|
| 56 |
|
| 57 |
-
```
|
| 58 |
-
NNCFCFG=/path/to/nncf_config
|
| 59 |
python run_glue.py \
|
| 60 |
--lr_scheduler_type cosine_with_restarts \
|
| 61 |
--cosine_lr_scheduler_cycles 11 6 \
|
|
@@ -89,12 +159,21 @@ python run_glue.py \
|
|
| 89 |
--seed 1
|
| 90 |
```
|
| 91 |
|
| 92 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 93 |
|
| 94 |
-
-
|
| 95 |
-
- Pytorch 1.13.1+cu116
|
| 96 |
-
- Datasets 2.8.0
|
| 97 |
-
- Tokenizers 0.13.2
|
| 98 |
-
- Optimum 1.6.3
|
| 99 |
-
- Optimum-intel 1.7.0
|
| 100 |
-
- NNCF 2.4.0
|
|
|
|
| 1 |
---
|
| 2 |
+
license: apache-2.0
|
| 3 |
language:
|
| 4 |
- en
|
| 5 |
tags:
|
|
|
|
| 26 |
value: 0.91284
|
| 27 |
---
|
| 28 |
|
| 29 |
+
# bert-base-uncased-sst2-unstructured80-int8-ov
|
|
|
|
| 30 |
|
| 31 |
+
* Model creator: [Google](https://huggingface.co/google-bert)
|
| 32 |
+
* Original model: [google-bert/bert-base-uncased](https://huggingface.co/google-bert/bert-base-uncased)
|
| 33 |
|
| 34 |
+
## Description
|
| 35 |
+
|
| 36 |
+
This model conducts unstructured magnitude pruning, quantization and distillation at the same time on [google-bert/bert-base-uncased](https://huggingface.co/google-bert/bert-base-uncased) when finetuning on the GLUE SST2 dataset.
|
| 37 |
It achieves the following results on the evaluation set:
|
| 38 |
+
- Torch accuracy: **0.9128**
|
| 39 |
+
- OpenVINO IR accuracy: **0.9128**
|
| 40 |
+
- Sparsity in transformer block linear layers: **0.80**
|
| 41 |
+
|
| 42 |
+
The model was converted to the [OpenVINO™ IR](https://docs.openvino.ai/2024/documentation/openvino-ir-format.html) (Intermediate Representation) format with weights compressed to INT8 by [NNCF](https://github.com/openvinotoolkit/nncf).
|
| 43 |
+
|
| 44 |
+
## Optimization Parameters
|
| 45 |
|
| 46 |
+
Optimization was performed using `nncf` with the following `nncf_config.json` file:
|
| 47 |
|
| 48 |
```
|
| 49 |
+
[
|
| 50 |
+
{
|
| 51 |
+
"algorithm": "quantization",
|
| 52 |
+
"preset": "mixed",
|
| 53 |
+
"overflow_fix": "disable",
|
| 54 |
+
"initializer": {
|
| 55 |
+
"range": {
|
| 56 |
+
"num_init_samples": 300,
|
| 57 |
+
"type": "mean_min_max"
|
| 58 |
+
},
|
| 59 |
+
"batchnorm_adaptation": {
|
| 60 |
+
"num_bn_adaptation_samples": 0
|
| 61 |
+
}
|
| 62 |
+
},
|
| 63 |
+
"scope_overrides": {
|
| 64 |
+
"activations": {
|
| 65 |
+
"{re}.*matmul_0": {
|
| 66 |
+
"mode": "symmetric"
|
| 67 |
+
}
|
| 68 |
+
}
|
| 69 |
+
},
|
| 70 |
+
"ignored_scopes": [
|
| 71 |
+
"{re}.*Embeddings.*",
|
| 72 |
+
"{re}.*__add___[0-1]",
|
| 73 |
+
"{re}.*layer_norm_0",
|
| 74 |
+
"{re}.*matmul_1",
|
| 75 |
+
"{re}.*__truediv__*"
|
| 76 |
+
]
|
| 77 |
+
},
|
| 78 |
+
{
|
| 79 |
+
"algorithm": "magnitude_sparsity",
|
| 80 |
+
"ignored_scopes": [
|
| 81 |
+
"{re}.*NNCFEmbedding.*",
|
| 82 |
+
"{re}.*LayerNorm.*",
|
| 83 |
+
"{re}.*pooler.*",
|
| 84 |
+
"{re}.*classifier.*"
|
| 85 |
+
],
|
| 86 |
+
"sparsity_init": 0.0,
|
| 87 |
+
"params": {
|
| 88 |
+
"power": 3,
|
| 89 |
+
"schedule": "polynomial",
|
| 90 |
+
"sparsity_freeze_epoch": 10,
|
| 91 |
+
"sparsity_target": 0.8,
|
| 92 |
+
"sparsity_target_epoch": 9,
|
| 93 |
+
"steps_per_epoch": 2105,
|
| 94 |
+
"update_per_optimizer_step": true
|
| 95 |
+
}
|
| 96 |
+
}
|
| 97 |
+
]
|
| 98 |
```
|
| 99 |
|
| 100 |
+
For more information on optimization, check the [OpenVINO model optimization guide](https://docs.openvino.ai/2024/openvino-workflow/model-optimization.html).
|
| 101 |
|
| 102 |
+
## Compatibility
|
| 103 |
|
| 104 |
+
The provided OpenVINO™ IR model is compatible with:
|
| 105 |
|
| 106 |
+
* Transformers 4.26.0
|
| 107 |
+
* Pytorch 1.13.1+cu116
|
| 108 |
+
* Datasets 2.8.0
|
| 109 |
+
* Tokenizers 0.13.2
|
| 110 |
+
* Optimum 1.6.3
|
| 111 |
+
* Optimum-intel 1.7.0
|
| 112 |
+
* NNCF 2.4.0
|
| 113 |
+
|
| 114 |
+
## Running Model Training
|
| 115 |
+
|
| 116 |
+
1. Install required packages:
|
| 117 |
+
|
| 118 |
+
```
|
| 119 |
+
conda install pytorch torchvision torchaudio pytorch-cuda=11.6 -c pytorch -c nvidia
|
| 120 |
+
pip install optimum[openvino,nncf]
|
| 121 |
+
pip install datasets sentencepiece scipy scikit-learn protobuf evaluate
|
| 122 |
+
pip install wandb # optional
|
| 123 |
+
```
|
| 124 |
|
| 125 |
+
2. Run model training:
|
| 126 |
|
| 127 |
+
```
|
| 128 |
+
NNCFCFG=/path/to/nncf_config.json
|
| 129 |
python run_glue.py \
|
| 130 |
--lr_scheduler_type cosine_with_restarts \
|
| 131 |
--cosine_lr_scheduler_cycles 11 6 \
|
|
|
|
| 159 |
--seed 1
|
| 160 |
```
|
| 161 |
|
| 162 |
+
For more details, refer to the [training configuration and script](https://gist.github.com/yujiepan-work/5d7e513a47b353db89f6e1b512d7c080).
|
| 163 |
+
|
| 164 |
+
## Usage examples
|
| 165 |
+
|
| 166 |
+
* [OpenVINO notebooks](https://github.com/openvinotoolkit/openvino_notebooks):
|
| 167 |
+
- [Accelerate Inference of Sparse Transformer Models with OpenVINO™ and 4th Gen Intel® Xeon® Scalable Processors](https://github.com/openvinotoolkit/openvino_notebooks/blob/latest/notebooks/sparsity-optimization/sparsity-optimization.ipynb)
|
| 168 |
+
|
| 169 |
+
## Limitations
|
| 170 |
+
|
| 171 |
+
Check the original model card for [limitations](https://huggingface.co/google-bert/bert-base-uncased).
|
| 172 |
+
|
| 173 |
+
## Legal information
|
| 174 |
+
|
| 175 |
+
The original model is distributed under [apache-2.0](https://choosealicense.com/licenses/apache-2.0/) license. More details can be found in [google-bert/bert-base-uncased](https://huggingface.co/google-bert/bert-base-uncased) model card.
|
| 176 |
+
|
| 177 |
+
## Disclaimer
|
| 178 |
|
| 179 |
+
Intel is committed to respecting human rights and avoiding causing or contributing to adverse impacts on human rights. See [Intel’s Global Human Rights Principles](https://www.intel.com/content/dam/www/central-libraries/us/en/documents/policy-human-rights.pdf). Intel’s products and software are intended only to be used in applications that do not cause or contribute to adverse impacts on human rights.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|