Create README.md
Browse files
README.md
CHANGED
|
@@ -0,0 +1,49 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
---
|
| 2 |
+
tags:
|
| 3 |
+
- fill-mask
|
| 4 |
+
- text2text-generation
|
| 5 |
+
- fill-mask
|
| 6 |
+
- Chinese
|
| 7 |
+
- cpt
|
| 8 |
+
- seq2seq
|
| 9 |
+
|
| 10 |
+
language: zh
|
| 11 |
+
---
|
| 12 |
+
|
| 13 |
+
# Chinese CPT-Base
|
| 14 |
+
|
| 15 |
+
## Model description
|
| 16 |
+
|
| 17 |
+
This is an implementation of CPT-Base. To use CPT, please import the file `modeling_cpt.py` (**Download** [Here](https://github.com/fastnlp/CPT/blob/master/finetune/modeling_cpt.py)) that define the architecture of CPT into your project.
|
| 18 |
+
|
| 19 |
+
[**CPT: A Pre-Trained Unbalanced Transformer for Both Chinese Language Understanding and Generation**](https://arxiv.org/pdf/2109.05729.pdf)
|
| 20 |
+
|
| 21 |
+
Yunfan Shao, Zhichao Geng, Yitao Liu, Junqi Dai, Fei Yang, Li Zhe, Hujun Bao, Xipeng Qiu
|
| 22 |
+
|
| 23 |
+
**Github Link:** https://github.com/fastnlp/CPT
|
| 24 |
+
|
| 25 |
+
## Usage
|
| 26 |
+
|
| 27 |
+
```python
|
| 28 |
+
>>> from modeling_cpt import CPTForConditionalGeneration
|
| 29 |
+
>>> from transformers import BertTokenizer
|
| 30 |
+
>>> tokenizer = BertTokenizer.from_pretrained("fnlp/cpt-base")
|
| 31 |
+
>>> model = CPTForConditionalGeneration.from_pretrained("fnlp/cpt-base")
|
| 32 |
+
>>> inputs = tokenizer.encode("北京是[MASK]的首都", return_tensors='pt')
|
| 33 |
+
>>> pred_ids = model.generate(input_ids, num_beams=4, max_length=20)
|
| 34 |
+
>>> print(tokenizer.convert_ids_to_tokens(pred_ids[i]))
|
| 35 |
+
['[SEP]', '[CLS]', '北', '京', '是', '中', '国', '的', '首', '都', '[SEP]']
|
| 36 |
+
```
|
| 37 |
+
|
| 38 |
+
**Note: Please use BertTokenizer for the model vocabulary. DO NOT use original BartTokenizer.**
|
| 39 |
+
|
| 40 |
+
## Citation
|
| 41 |
+
|
| 42 |
+
```bibtex
|
| 43 |
+
@article{shao2021cpt,
|
| 44 |
+
title={CPT: A Pre-Trained Unbalanced Transformer for Both Chinese Language Understanding and Generation},
|
| 45 |
+
author={Yunfan Shao and Zhichao Geng and Yitao Liu and Junqi Dai and Fei Yang and Li Zhe and Hujun Bao and Xipeng Qiu},
|
| 46 |
+
journal={arXiv preprint arXiv:2109.05729},
|
| 47 |
+
year={2021}
|
| 48 |
+
}
|
| 49 |
+
```
|