Upload folder using huggingface_hub
Browse files- .gitattributes +2 -0
- README.md +704 -0
- added_tokens.json +33 -0
- config.json +220 -0
- configuration_intern_vit.py +120 -0
- configuration_internvl_chat.py +97 -0
- conversation.py +391 -0
- examples/image1.jpg +0 -0
- examples/image2.jpg +3 -0
- examples/red-panda.mp4 +3 -0
- generation_config.json +4 -0
- merges.txt +0 -0
- model-00001-of-00004.safetensors +3 -0
- model-00002-of-00004.safetensors +3 -0
- model-00003-of-00004.safetensors +3 -0
- model-00004-of-00004.safetensors +3 -0
- model.safetensors.index.json +692 -0
- modeling_intern_vit.py +431 -0
- modeling_internvl_chat.py +359 -0
- preprocessor_config.json +19 -0
- special_tokens_map.json +31 -0
- tokenizer.json +0 -0
- tokenizer_config.json +280 -0
- vocab.json +0 -0
    	
        .gitattributes
    CHANGED
    
    | @@ -33,3 +33,5 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text | |
| 33 | 
             
            *.zip filter=lfs diff=lfs merge=lfs -text
         | 
| 34 | 
             
            *.zst filter=lfs diff=lfs merge=lfs -text
         | 
| 35 | 
             
            *tfevents* filter=lfs diff=lfs merge=lfs -text
         | 
|  | |
|  | 
|  | |
| 33 | 
             
            *.zip filter=lfs diff=lfs merge=lfs -text
         | 
| 34 | 
             
            *.zst filter=lfs diff=lfs merge=lfs -text
         | 
| 35 | 
             
            *tfevents* filter=lfs diff=lfs merge=lfs -text
         | 
| 36 | 
            +
            examples/image2.jpg filter=lfs diff=lfs merge=lfs -text
         | 
| 37 | 
            +
            examples/red-panda.mp4 filter=lfs diff=lfs merge=lfs -text
         | 
    	
        README.md
    ADDED
    
    | @@ -0,0 +1,704 @@ | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            ---
         | 
| 2 | 
            +
            license: other
         | 
| 3 | 
            +
            license_name: qwen
         | 
| 4 | 
            +
            license_link: https://huggingface.co/Qwen/Qwen2.5-72B-Instruct/blob/main/LICENSE
         | 
| 5 | 
            +
            pipeline_tag: image-text-to-text
         | 
| 6 | 
            +
            library_name: transformers
         | 
| 7 | 
            +
            base_model:
         | 
| 8 | 
            +
              - OpenGVLab/InternViT-300M-448px-V2_5
         | 
| 9 | 
            +
              - Qwen/Qwen2.5-7B
         | 
| 10 | 
            +
            base_model_relation: merge
         | 
| 11 | 
            +
            language:
         | 
| 12 | 
            +
              - multilingual
         | 
| 13 | 
            +
            tags:
         | 
| 14 | 
            +
              - internvl
         | 
| 15 | 
            +
              - custom_code
         | 
| 16 | 
            +
            ---
         | 
| 17 | 
            +
             | 
| 18 | 
            +
            # InternVL3-8B-Pretrain
         | 
| 19 | 
            +
             | 
| 20 | 
            +
            [\[📂 GitHub\]](https://github.com/OpenGVLab/InternVL)  [\[📜 InternVL 1.0\]](https://huggingface.co/papers/2312.14238)  [\[📜 InternVL 1.5\]](https://huggingface.co/papers/2404.16821)  [\[📜 InternVL 2.5\]](https://huggingface.co/papers/2412.05271)  [\[📜 InternVL2.5-MPO\]](https://huggingface.co/papers/2411.10442)  [\[📜 InternVL3\]](https://huggingface.co/papers/2504.10479)
         | 
| 21 | 
            +
             | 
| 22 | 
            +
            [\[🆕 Blog\]](https://internvl.github.io/blog/)  [\[🗨️ Chat Demo\]](https://internvl.opengvlab.com/)  [\[🤗 HF Demo\]](https://huggingface.co/spaces/OpenGVLab/InternVL)  [\[🚀 Quick Start\]](#quick-start)  [\[📖 Documents\]](https://internvl.readthedocs.io/en/latest/)
         | 
| 23 | 
            +
             | 
| 24 | 
            +
            <div align="center">
         | 
| 25 | 
            +
              <img width="500" alt="image" src="https://cdn-uploads.huggingface.co/production/uploads/64006c09330a45b03605bba3/zJsd2hqd3EevgXo6fNgC-.png">
         | 
| 26 | 
            +
            </div>
         | 
| 27 | 
            +
             | 
| 28 | 
            +
            ## Introduction
         | 
| 29 | 
            +
             | 
| 30 | 
            +
            ***This is the pretrained version of InternVL3-8B, which has undergone native multimodal pre-trainin but has not undergone post-training (i.e., SFT and MPO).***
         | 
| 31 | 
            +
             | 
| 32 | 
            +
            We introduce InternVL3, an advanced multimodal large language model (MLLM) series that demonstrates superior overall performance.
         | 
| 33 | 
            +
            Compared to InternVL 2.5, InternVL3 exhibits superior multimodal perception and reasoning capabilities, while further extending its multimodal capabilities to encompass tool usage, GUI agents, industrial image analysis, 3D vision perception, and more.
         | 
| 34 | 
            +
            Additionally, we compare InternVL3 with  Qwen2.5 Chat models, whose corresponding pre-trained base models are employed as the initialization of the langauge component in InternVL3. Benefitting from Native Multimodal Pre-Training, the InternVL3 series achieves even better overall text performance than the Qwen2.5 series.
         | 
| 35 | 
            +
             | 
| 36 | 
            +
            
         | 
| 37 | 
            +
             | 
| 38 | 
            +
            ## InternVL3 Family
         | 
| 39 | 
            +
             | 
| 40 | 
            +
            In the following table, we provide an overview of the InternVL3 series.
         | 
| 41 | 
            +
             | 
| 42 | 
            +
            |  Model Name   |                                       Vision Part                                       |                                 Language Part                                  |                         HF Link                          |
         | 
| 43 | 
            +
            | :-----------: | :-------------------------------------------------------------------------------------: | :----------------------------------------------------------------------------: | :------------------------------------------------------: |
         | 
| 44 | 
            +
            | InternVL3-1B  | [InternViT-300M-448px-V2_5](https://huggingface.co/OpenGVLab/InternViT-300M-448px-V2_5) |            [Qwen2.5-0.5B](https://huggingface.co/Qwen/Qwen2.5-0.5B)            | [🤗 link](https://huggingface.co/OpenGVLab/InternVL3-1B)  |
         | 
| 45 | 
            +
            | InternVL3-2B  | [InternViT-300M-448px-V2_5](https://huggingface.co/OpenGVLab/InternViT-300M-448px-V2_5) |            [Qwen2.5-1.5B](https://huggingface.co/Qwen/Qwen2.5-1.5B)            | [🤗 link](https://huggingface.co/OpenGVLab/InternVL3-2B)  |
         | 
| 46 | 
            +
            | InternVL3-8B  | [InternViT-300M-448px-V2_5](https://huggingface.co/OpenGVLab/InternViT-300M-448px-V2_5) |              [Qwen2.5-7B](https://huggingface.co/Qwen/Qwen2.5-7B)              | [🤗 link](https://huggingface.co/OpenGVLab/InternVL3-8B)  |
         | 
| 47 | 
            +
            | InternVL3-9B  | [InternViT-300M-448px-V2_5](https://huggingface.co/OpenGVLab/InternViT-300M-448px-V2_5) | [internlm3-8b-instruct](https://huggingface.co/internlm/internlm3-8b-instruct) | [🤗 link](https://huggingface.co/OpenGVLab/InternVL3-9B)  |
         | 
| 48 | 
            +
            | InternVL3-14B | [InternViT-300M-448px-V2_5](https://huggingface.co/OpenGVLab/InternViT-300M-448px-V2_5) |             [Qwen2.5-14B](https://huggingface.co/Qwen/Qwen2.5-14B)             | [🤗 link](https://huggingface.co/OpenGVLab/InternVL3-14B) |
         | 
| 49 | 
            +
            | InternVL3-38B |   [InternViT-6B-448px-V2_5](https://huggingface.co/OpenGVLab/InternViT-6B-448px-V2_5)   |             [Qwen2.5-32B](https://huggingface.co/Qwen/Qwen2.5-32B)             | [🤗 link](https://huggingface.co/OpenGVLab/InternVL3-38B) |
         | 
| 50 | 
            +
            | InternVL3-78B |   [InternViT-6B-448px-V2_5](https://huggingface.co/OpenGVLab/InternViT-6B-448px-V2_5)   |             [Qwen2.5-72B](https://huggingface.co/Qwen/Qwen2.5-72B)             | [🤗 link](https://huggingface.co/OpenGVLab/InternVL3-78B) |
         | 
| 51 | 
            +
             | 
| 52 | 
            +
            
         | 
| 53 | 
            +
             | 
| 54 | 
            +
            ## Model Architecture
         | 
| 55 | 
            +
             | 
| 56 | 
            +
            As shown in the following figure, [InternVL3](https://internvl.github.io/blog/2025-04-11-InternVL-3/) retains the same model architecture as [InternVL 2.5](https://internvl.github.io/blog/2024-12-05-InternVL-2.5/) and its predecessors, InternVL 1.5 and 2.0, following the "ViT-MLP-LLM" paradigm. In this new version, we integrate a newly incrementally pre-trained InternViT with various pre-trained LLMs, including InternLM 3 and Qwen 2.5, using a randomly initialized MLP projector.
         | 
| 57 | 
            +
             | 
| 58 | 
            +
             | 
| 59 | 
            +
            
         | 
| 60 | 
            +
             | 
| 61 | 
            +
            As in the previous version, we applied a pixel unshuffle operation, reducing the number of visual tokens to one-quarter of the original. Besides, we adopted a similar dynamic resolution strategy as InternVL 1.5, dividing images into tiles of 448×448 pixels. The key difference, starting from InternVL 2.0, is that we additionally introduced support for multi-image and video data.
         | 
| 62 | 
            +
             | 
| 63 | 
            +
            Notably, in InternVL3, we integrate the [Variable Visual Position Encoding (V2PE)](https://arxiv.org/abs/2412.09616), which utilizes smaller, more flexible position increments for visual tokens. Benefiting from V2PE, InternVL3 exhibits better long context understanding capabilities compared to its predecessors.
         | 
| 64 | 
            +
             | 
| 65 | 
            +
            ## Training Strategy
         | 
| 66 | 
            +
             | 
| 67 | 
            +
            ### Native Multimodal Pre-Training
         | 
| 68 | 
            +
             | 
| 69 | 
            +
            We propose a [Native Multimodal Pre-Training](https://huggingface.co/papers/2504.10479) approach that consolidates language and vision learning into a single pre-training stage.
         | 
| 70 | 
            +
            In contrast to standard paradigms that first train a language-only model and subsequently adapt it to handle additional modalities, our method interleaves multimodal data (e.g., image-text, video-text, or image-text interleaved sequences) with large-scale textual corpora. This unified training scheme allows the model to learn both linguistic and multimodal representations simultaneously, ultimately enhancing its capability to handle vision-language tasks without the need for separate alignment or bridging modules.
         | 
| 71 | 
            +
            Please see [our paper](https://huggingface.co/papers/2504.10479) for more details.
         | 
| 72 | 
            +
             | 
| 73 | 
            +
            ### Supervised Fine-Tuning
         | 
| 74 | 
            +
             | 
| 75 | 
            +
            In this phase, the techniques of random JPEG compression, square loss re-weighting, and multimodal data packing proposed in [InternVL2.5](https://arxiv.org/abs/2412.05271) are also employed in the InternVL3 series.
         | 
| 76 | 
            +
            The main advancement of the SFT phase in InternVL3 compared to InternVL2.5 lies in the use of higher-quality and more diverse training data.
         | 
| 77 | 
            +
            Specifically, we further extend  training samples for tool use, 3D scene understanding, GUI operations, long context tasks, video understanding, scientific diagrams, creative writing, and multimodal reasoning.
         | 
| 78 | 
            +
             | 
| 79 | 
            +
            ### Mixed Preference Optimization
         | 
| 80 | 
            +
             | 
| 81 | 
            +
            During Pre-training and SFT, the model is trained to predict the next token conditioned on previous ground-truth tokens.
         | 
| 82 | 
            +
            However, during inference, the model predicts each token based on its own prior outputs. 
         | 
| 83 | 
            +
            This discrepancy between ground-truth tokens and model-predicted tokens introduces a distribution shift, which can impair the model’s Chain-of-Thought (CoT) reasoning capabilities.
         | 
| 84 | 
            +
            To mitigate this issue, we employ [MPO](https://arxiv.org/abs/2411.10442), which introduces additional supervision from both positive and negative samples to align the model response distribution with the ground-truth distribution, thereby improving reasoning performance.
         | 
| 85 | 
            +
            Specifically, the training objective of MPO is a combination of
         | 
| 86 | 
            +
            preference loss \\(\mathcal{L}_{\text{p}}\\),
         | 
| 87 | 
            +
            quality loss \\(\mathcal{L}_{\text{q}}\\),
         | 
| 88 | 
            +
            and generation loss \\(\mathcal{L}_{\text{g}}\\),
         | 
| 89 | 
            +
            which can be formulated as follows:
         | 
| 90 | 
            +
             | 
| 91 | 
            +
             | 
| 92 | 
            +
            $$
         | 
| 93 | 
            +
            \mathcal{L}=w_{p}\cdot\mathcal{L}_{\text{p}} + w_{q}\cdot\mathcal{L}_{\text{q}} + w_{g}\cdot\mathcal{L}_{\text{g}},
         | 
| 94 | 
            +
            $$
         | 
| 95 | 
            +
             | 
| 96 | 
            +
             | 
| 97 | 
            +
            where \\(w_{*}\\) represents the weight assigned to each loss component. Please see [our paper](https://arxiv.org/abs/2411.10442) for more details about MPO.
         | 
| 98 | 
            +
             | 
| 99 | 
            +
             | 
| 100 | 
            +
            ### Test-Time Scaling
         | 
| 101 | 
            +
             | 
| 102 | 
            +
            Test-Time Scaling has been shown to be an effective method to enhance the reasoning abilities of LLMs and MLLMs.
         | 
| 103 | 
            +
            In this work, we use the Best-of-N evaluation strategy and employ [VisualPRM-8B](https://huggingface.co/OpenGVLab/VisualPRM-8B) as the critic model to select the best response for reasoning and mathematics evaluation.
         | 
| 104 | 
            +
             | 
| 105 | 
            +
            ## Evaluation on Multimodal Capability
         | 
| 106 | 
            +
             | 
| 107 | 
            +
            ### Multimodal Reasoning and Mathematics
         | 
| 108 | 
            +
             | 
| 109 | 
            +
            
         | 
| 110 | 
            +
             | 
| 111 | 
            +
            ### OCR, Chart, and Document Understanding
         | 
| 112 | 
            +
             | 
| 113 | 
            +
            
         | 
| 114 | 
            +
             | 
| 115 | 
            +
            ### Multi-Image & Real-World Comprehension
         | 
| 116 | 
            +
             | 
| 117 | 
            +
            
         | 
| 118 | 
            +
             | 
| 119 | 
            +
            ### Comprehensive Multimodal & Hallucination Evaluation
         | 
| 120 | 
            +
             | 
| 121 | 
            +
            
         | 
| 122 | 
            +
             | 
| 123 | 
            +
            ### Visual Grounding
         | 
| 124 | 
            +
             | 
| 125 | 
            +
            
         | 
| 126 | 
            +
             | 
| 127 | 
            +
            ### Multimodal Multilingual Understanding
         | 
| 128 | 
            +
             | 
| 129 | 
            +
            
         | 
| 130 | 
            +
             | 
| 131 | 
            +
            ### Video Understanding
         | 
| 132 | 
            +
             | 
| 133 | 
            +
            
         | 
| 134 | 
            +
             | 
| 135 | 
            +
            ### GUI Grounding
         | 
| 136 | 
            +
             | 
| 137 | 
            +
            
         | 
| 138 | 
            +
             | 
| 139 | 
            +
            ### Spatial Reasoning
         | 
| 140 | 
            +
             | 
| 141 | 
            +
            
         | 
| 142 | 
            +
             | 
| 143 | 
            +
            ## Evaluation on Language Capability
         | 
| 144 | 
            +
             | 
| 145 | 
            +
            We compare InternVL3 with  Qwen2.5 Chat models, whose corresponding pre-trained base models are employed as the initialization of the langauge component in InternVL3.
         | 
| 146 | 
            +
            Benefitting from Native Multimodal Pre-Training, the InternVL3 series achieves even better overall text performance than the Qwen2.5 series.
         | 
| 147 | 
            +
            Please note that the evaluation scores of Qwen2.5 series  may differ from those officially reported, as we have adopted the prompt versions provided in the table across all datasets for OpenCompass evaluation.
         | 
| 148 | 
            +
             | 
| 149 | 
            +
            
         | 
| 150 | 
            +
             | 
| 151 | 
            +
            ## Ablation Study
         | 
| 152 | 
            +
             | 
| 153 | 
            +
            ### Native Multimodal Pre-Training
         | 
| 154 | 
            +
             | 
| 155 | 
            +
            We conduct experiments on the InternVL2-8B model while keeping its architecture, initialization parameters, and training data entirely unchanged. Traditionally, InternVL2-8B employs a training pipeline that begins with an MLP warmup phase for feature alignment followed by an Instruction Tuning stage. In our experiments, we substitute the conventional MLP warmup phase with a native multimodal pre-training process. This modification isolates the contribution of native multimodal pre-training to the overall multimodal capability of the model.
         | 
| 156 | 
            +
             | 
| 157 | 
            +
            The evaluation results in the Figure below shows that the model with native multimodal pre-training exhibits performance on most benchmarks that is comparable to the fully multi-stage-trained InternVL2-8B baseline. Furthermore, when followed by instruction tuning on higher-quality data, the model demonstrates further performance gains across evaluated multimodal tasks. These findings underscore the efficiency of native multimodal pre-training in imparting powerful multimodal capabilities to MLLMs.
         | 
| 158 | 
            +
             | 
| 159 | 
            +
            
         | 
| 160 | 
            +
             | 
| 161 | 
            +
            ### Mixed Preference Optimization
         | 
| 162 | 
            +
             | 
| 163 | 
            +
            As shown in the table below, models fine-tuned with MPO demonstrate superior reasoning performance across seven multimodal reasoning benchmarks compared to their counterparts without MPO. Specifically, InternVL3-78B and InternVL3-38B outperform their counterparts by 4.1 and 4.5 points, respectively. Notably, the training data used for MPO is a subset of that used for SFT, indicating that the performance improvements primarily stem from the training algorithm rather than the training data.
         | 
| 164 | 
            +
             | 
| 165 | 
            +
            
         | 
| 166 | 
            +
             | 
| 167 | 
            +
            ### Variable Visual Position Encoding
         | 
| 168 | 
            +
             | 
| 169 | 
            +
            As reported in the table below, the introduction of V2PE leads to significant performance gains across most evaluation metrics. In addition, our ablation studies—by varying the positional increment \\( \delta \\)—reveal that even for tasks primarily involving conventional contexts, relatively small \\( \delta \\) values can achieve optimal performance. These findings provide important insights for future efforts aimed at refining position encoding strategies for visual tokens in MLLMs.
         | 
| 170 | 
            +
             | 
| 171 | 
            +
            
         | 
| 172 | 
            +
             | 
| 173 | 
            +
            ## Quick Start
         | 
| 174 | 
            +
             | 
| 175 | 
            +
            We provide an example code to run `InternVL3-8B` using `transformers`.
         | 
| 176 | 
            +
             | 
| 177 | 
            +
            > Please use transformers>=4.37.2 to ensure the model works normally.
         | 
| 178 | 
            +
             | 
| 179 | 
            +
            ### Model Loading
         | 
| 180 | 
            +
             | 
| 181 | 
            +
            #### 16-bit (bf16 / fp16)
         | 
| 182 | 
            +
             | 
| 183 | 
            +
            ```python
         | 
| 184 | 
            +
            import torch
         | 
| 185 | 
            +
            from transformers import AutoTokenizer, AutoModel
         | 
| 186 | 
            +
            path = "OpenGVLab/InternVL3-8B"
         | 
| 187 | 
            +
            model = AutoModel.from_pretrained(
         | 
| 188 | 
            +
                path,
         | 
| 189 | 
            +
                torch_dtype=torch.bfloat16,
         | 
| 190 | 
            +
                low_cpu_mem_usage=True,
         | 
| 191 | 
            +
                use_flash_attn=True,
         | 
| 192 | 
            +
                trust_remote_code=True).eval().cuda()
         | 
| 193 | 
            +
            ```
         | 
| 194 | 
            +
             | 
| 195 | 
            +
            #### BNB 8-bit Quantization
         | 
| 196 | 
            +
             | 
| 197 | 
            +
            ```python
         | 
| 198 | 
            +
            import torch
         | 
| 199 | 
            +
            from transformers import AutoTokenizer, AutoModel
         | 
| 200 | 
            +
            path = "OpenGVLab/InternVL3-8B"
         | 
| 201 | 
            +
            model = AutoModel.from_pretrained(
         | 
| 202 | 
            +
                path,
         | 
| 203 | 
            +
                torch_dtype=torch.bfloat16,
         | 
| 204 | 
            +
                load_in_8bit=True,
         | 
| 205 | 
            +
                low_cpu_mem_usage=True,
         | 
| 206 | 
            +
                use_flash_attn=True,
         | 
| 207 | 
            +
                trust_remote_code=True).eval()
         | 
| 208 | 
            +
            ```
         | 
| 209 | 
            +
             | 
| 210 | 
            +
            #### Multiple GPUs
         | 
| 211 | 
            +
             | 
| 212 | 
            +
            The reason for writing the code this way is to avoid errors that occur during multi-GPU inference due to tensors not being on the same device. By ensuring that the first and last layers of the large language model (LLM) are on the same device, we prevent such errors.
         | 
| 213 | 
            +
             | 
| 214 | 
            +
            ```python
         | 
| 215 | 
            +
            import math
         | 
| 216 | 
            +
            import torch
         | 
| 217 | 
            +
            from transformers import AutoTokenizer, AutoModel
         | 
| 218 | 
            +
             | 
| 219 | 
            +
            def split_model(model_name):
         | 
| 220 | 
            +
                device_map = {}
         | 
| 221 | 
            +
                world_size = torch.cuda.device_count()
         | 
| 222 | 
            +
                config = AutoConfig.from_pretrained(model_path, trust_remote_code=True)
         | 
| 223 | 
            +
                num_layers = config.llm_config.num_hidden_layers
         | 
| 224 | 
            +
                # Since the first GPU will be used for ViT, treat it as half a GPU.
         | 
| 225 | 
            +
                num_layers_per_gpu = math.ceil(num_layers / (world_size - 0.5))
         | 
| 226 | 
            +
                num_layers_per_gpu = [num_layers_per_gpu] * world_size
         | 
| 227 | 
            +
                num_layers_per_gpu[0] = math.ceil(num_layers_per_gpu[0] * 0.5)
         | 
| 228 | 
            +
                layer_cnt = 0
         | 
| 229 | 
            +
                for i, num_layer in enumerate(num_layers_per_gpu):
         | 
| 230 | 
            +
                    for j in range(num_layer):
         | 
| 231 | 
            +
                        device_map[f'language_model.model.layers.{layer_cnt}'] = i
         | 
| 232 | 
            +
                        layer_cnt += 1
         | 
| 233 | 
            +
                device_map['vision_model'] = 0
         | 
| 234 | 
            +
                device_map['mlp1'] = 0
         | 
| 235 | 
            +
                device_map['language_model.model.tok_embeddings'] = 0
         | 
| 236 | 
            +
                device_map['language_model.model.embed_tokens'] = 0
         | 
| 237 | 
            +
                device_map['language_model.output'] = 0
         | 
| 238 | 
            +
                device_map['language_model.model.norm'] = 0
         | 
| 239 | 
            +
                device_map['language_model.model.rotary_emb'] = 0
         | 
| 240 | 
            +
                device_map['language_model.lm_head'] = 0
         | 
| 241 | 
            +
                device_map[f'language_model.model.layers.{num_layers - 1}'] = 0
         | 
| 242 | 
            +
             | 
| 243 | 
            +
                return device_map
         | 
| 244 | 
            +
             | 
| 245 | 
            +
            path = "OpenGVLab/InternVL3-8B"
         | 
| 246 | 
            +
            device_map = split_model('InternVL3-8B')
         | 
| 247 | 
            +
            model = AutoModel.from_pretrained(
         | 
| 248 | 
            +
                path,
         | 
| 249 | 
            +
                torch_dtype=torch.bfloat16,
         | 
| 250 | 
            +
                low_cpu_mem_usage=True,
         | 
| 251 | 
            +
                use_flash_attn=True,
         | 
| 252 | 
            +
                trust_remote_code=True,
         | 
| 253 | 
            +
                device_map=device_map).eval()
         | 
| 254 | 
            +
            ```
         | 
| 255 | 
            +
             | 
| 256 | 
            +
            ### Inference with Transformers
         | 
| 257 | 
            +
             | 
| 258 | 
            +
            ```python
         | 
| 259 | 
            +
            import math
         | 
| 260 | 
            +
            import numpy as np
         | 
| 261 | 
            +
            import torch
         | 
| 262 | 
            +
            import torchvision.transforms as T
         | 
| 263 | 
            +
            from decord import VideoReader, cpu
         | 
| 264 | 
            +
            from PIL import Image
         | 
| 265 | 
            +
            from torchvision.transforms.functional import InterpolationMode
         | 
| 266 | 
            +
            from transformers import AutoModel, AutoTokenizer
         | 
| 267 | 
            +
             | 
| 268 | 
            +
            IMAGENET_MEAN = (0.485, 0.456, 0.406)
         | 
| 269 | 
            +
            IMAGENET_STD = (0.229, 0.224, 0.225)
         | 
| 270 | 
            +
             | 
| 271 | 
            +
            def build_transform(input_size):
         | 
| 272 | 
            +
                MEAN, STD = IMAGENET_MEAN, IMAGENET_STD
         | 
| 273 | 
            +
                transform = T.Compose([
         | 
| 274 | 
            +
                    T.Lambda(lambda img: img.convert('RGB') if img.mode != 'RGB' else img),
         | 
| 275 | 
            +
                    T.Resize((input_size, input_size), interpolation=InterpolationMode.BICUBIC),
         | 
| 276 | 
            +
                    T.ToTensor(),
         | 
| 277 | 
            +
                    T.Normalize(mean=MEAN, std=STD)
         | 
| 278 | 
            +
                ])
         | 
| 279 | 
            +
                return transform
         | 
| 280 | 
            +
             | 
| 281 | 
            +
            def find_closest_aspect_ratio(aspect_ratio, target_ratios, width, height, image_size):
         | 
| 282 | 
            +
                best_ratio_diff = float('inf')
         | 
| 283 | 
            +
                best_ratio = (1, 1)
         | 
| 284 | 
            +
                area = width * height
         | 
| 285 | 
            +
                for ratio in target_ratios:
         | 
| 286 | 
            +
                    target_aspect_ratio = ratio[0] / ratio[1]
         | 
| 287 | 
            +
                    ratio_diff = abs(aspect_ratio - target_aspect_ratio)
         | 
| 288 | 
            +
                    if ratio_diff < best_ratio_diff:
         | 
| 289 | 
            +
                        best_ratio_diff = ratio_diff
         | 
| 290 | 
            +
                        best_ratio = ratio
         | 
| 291 | 
            +
                    elif ratio_diff == best_ratio_diff:
         | 
| 292 | 
            +
                        if area > 0.5 * image_size * image_size * ratio[0] * ratio[1]:
         | 
| 293 | 
            +
                            best_ratio = ratio
         | 
| 294 | 
            +
                return best_ratio
         | 
| 295 | 
            +
             | 
| 296 | 
            +
            def dynamic_preprocess(image, min_num=1, max_num=12, image_size=448, use_thumbnail=False):
         | 
| 297 | 
            +
                orig_width, orig_height = image.size
         | 
| 298 | 
            +
                aspect_ratio = orig_width / orig_height
         | 
| 299 | 
            +
             | 
| 300 | 
            +
                # calculate the existing image aspect ratio
         | 
| 301 | 
            +
                target_ratios = set(
         | 
| 302 | 
            +
                    (i, j) for n in range(min_num, max_num + 1) for i in range(1, n + 1) for j in range(1, n + 1) if
         | 
| 303 | 
            +
                    i * j <= max_num and i * j >= min_num)
         | 
| 304 | 
            +
                target_ratios = sorted(target_ratios, key=lambda x: x[0] * x[1])
         | 
| 305 | 
            +
             | 
| 306 | 
            +
                # find the closest aspect ratio to the target
         | 
| 307 | 
            +
                target_aspect_ratio = find_closest_aspect_ratio(
         | 
| 308 | 
            +
                    aspect_ratio, target_ratios, orig_width, orig_height, image_size)
         | 
| 309 | 
            +
             | 
| 310 | 
            +
                # calculate the target width and height
         | 
| 311 | 
            +
                target_width = image_size * target_aspect_ratio[0]
         | 
| 312 | 
            +
                target_height = image_size * target_aspect_ratio[1]
         | 
| 313 | 
            +
                blocks = target_aspect_ratio[0] * target_aspect_ratio[1]
         | 
| 314 | 
            +
             | 
| 315 | 
            +
                # resize the image
         | 
| 316 | 
            +
                resized_img = image.resize((target_width, target_height))
         | 
| 317 | 
            +
                processed_images = []
         | 
| 318 | 
            +
                for i in range(blocks):
         | 
| 319 | 
            +
                    box = (
         | 
| 320 | 
            +
                        (i % (target_width // image_size)) * image_size,
         | 
| 321 | 
            +
                        (i // (target_width // image_size)) * image_size,
         | 
| 322 | 
            +
                        ((i % (target_width // image_size)) + 1) * image_size,
         | 
| 323 | 
            +
                        ((i // (target_width // image_size)) + 1) * image_size
         | 
| 324 | 
            +
                    )
         | 
| 325 | 
            +
                    # split the image
         | 
| 326 | 
            +
                    split_img = resized_img.crop(box)
         | 
| 327 | 
            +
                    processed_images.append(split_img)
         | 
| 328 | 
            +
                assert len(processed_images) == blocks
         | 
| 329 | 
            +
                if use_thumbnail and len(processed_images) != 1:
         | 
| 330 | 
            +
                    thumbnail_img = image.resize((image_size, image_size))
         | 
| 331 | 
            +
                    processed_images.append(thumbnail_img)
         | 
| 332 | 
            +
                return processed_images
         | 
| 333 | 
            +
             | 
| 334 | 
            +
            def load_image(image_file, input_size=448, max_num=12):
         | 
| 335 | 
            +
                image = Image.open(image_file).convert('RGB')
         | 
| 336 | 
            +
                transform = build_transform(input_size=input_size)
         | 
| 337 | 
            +
                images = dynamic_preprocess(image, image_size=input_size, use_thumbnail=True, max_num=max_num)
         | 
| 338 | 
            +
                pixel_values = [transform(image) for image in images]
         | 
| 339 | 
            +
                pixel_values = torch.stack(pixel_values)
         | 
| 340 | 
            +
                return pixel_values
         | 
| 341 | 
            +
             | 
| 342 | 
            +
            def split_model(model_name):
         | 
| 343 | 
            +
                device_map = {}
         | 
| 344 | 
            +
                world_size = torch.cuda.device_count()
         | 
| 345 | 
            +
                config = AutoConfig.from_pretrained(model_path, trust_remote_code=True)
         | 
| 346 | 
            +
                num_layers = config.llm_config.num_hidden_layers
         | 
| 347 | 
            +
                # Since the first GPU will be used for ViT, treat it as half a GPU.
         | 
| 348 | 
            +
                num_layers_per_gpu = math.ceil(num_layers / (world_size - 0.5))
         | 
| 349 | 
            +
                num_layers_per_gpu = [num_layers_per_gpu] * world_size
         | 
| 350 | 
            +
                num_layers_per_gpu[0] = math.ceil(num_layers_per_gpu[0] * 0.5)
         | 
| 351 | 
            +
                layer_cnt = 0
         | 
| 352 | 
            +
                for i, num_layer in enumerate(num_layers_per_gpu):
         | 
| 353 | 
            +
                    for j in range(num_layer):
         | 
| 354 | 
            +
                        device_map[f'language_model.model.layers.{layer_cnt}'] = i
         | 
| 355 | 
            +
                        layer_cnt += 1
         | 
| 356 | 
            +
                device_map['vision_model'] = 0
         | 
| 357 | 
            +
                device_map['mlp1'] = 0
         | 
| 358 | 
            +
                device_map['language_model.model.tok_embeddings'] = 0
         | 
| 359 | 
            +
                device_map['language_model.model.embed_tokens'] = 0
         | 
| 360 | 
            +
                device_map['language_model.output'] = 0
         | 
| 361 | 
            +
                device_map['language_model.model.norm'] = 0
         | 
| 362 | 
            +
                device_map['language_model.model.rotary_emb'] = 0
         | 
| 363 | 
            +
                device_map['language_model.lm_head'] = 0
         | 
| 364 | 
            +
                device_map[f'language_model.model.layers.{num_layers - 1}'] = 0
         | 
| 365 | 
            +
             | 
| 366 | 
            +
                return device_map
         | 
| 367 | 
            +
             | 
| 368 | 
            +
            # If you set `load_in_8bit=True`, you will need two 80GB GPUs.
         | 
| 369 | 
            +
            # If you set `load_in_8bit=False`, you will need at least three 80GB GPUs.
         | 
| 370 | 
            +
            path = 'OpenGVLab/InternVL3-8B'
         | 
| 371 | 
            +
            device_map = split_model('InternVL3-8B')
         | 
| 372 | 
            +
            model = AutoModel.from_pretrained(
         | 
| 373 | 
            +
                path,
         | 
| 374 | 
            +
                torch_dtype=torch.bfloat16,
         | 
| 375 | 
            +
                load_in_8bit=False,
         | 
| 376 | 
            +
                low_cpu_mem_usage=True,
         | 
| 377 | 
            +
                use_flash_attn=True,
         | 
| 378 | 
            +
                trust_remote_code=True,
         | 
| 379 | 
            +
                device_map=device_map).eval()
         | 
| 380 | 
            +
            tokenizer = AutoTokenizer.from_pretrained(path, trust_remote_code=True, use_fast=False)
         | 
| 381 | 
            +
             | 
| 382 | 
            +
            # set the max number of tiles in `max_num`
         | 
| 383 | 
            +
            pixel_values = load_image('./examples/image1.jpg', max_num=12).to(torch.bfloat16).cuda()
         | 
| 384 | 
            +
            generation_config = dict(max_new_tokens=1024, do_sample=True)
         | 
| 385 | 
            +
             | 
| 386 | 
            +
            # pure-text conversation (纯文本对话)
         | 
| 387 | 
            +
            question = 'Hello, who are you?'
         | 
| 388 | 
            +
            response, history = model.chat(tokenizer, None, question, generation_config, history=None, return_history=True)
         | 
| 389 | 
            +
            print(f'User: {question}\nAssistant: {response}')
         | 
| 390 | 
            +
             | 
| 391 | 
            +
            question = 'Can you tell me a story?'
         | 
| 392 | 
            +
            response, history = model.chat(tokenizer, None, question, generation_config, history=history, return_history=True)
         | 
| 393 | 
            +
            print(f'User: {question}\nAssistant: {response}')
         | 
| 394 | 
            +
             | 
| 395 | 
            +
            # single-image single-round conversation (单图单轮对话)
         | 
| 396 | 
            +
            question = '<image>\nPlease describe the image shortly.'
         | 
| 397 | 
            +
            response = model.chat(tokenizer, pixel_values, question, generation_config)
         | 
| 398 | 
            +
            print(f'User: {question}\nAssistant: {response}')
         | 
| 399 | 
            +
             | 
| 400 | 
            +
            # single-image multi-round conversation (单图多轮对话)
         | 
| 401 | 
            +
            question = '<image>\nPlease describe the image in detail.'
         | 
| 402 | 
            +
            response, history = model.chat(tokenizer, pixel_values, question, generation_config, history=None, return_history=True)
         | 
| 403 | 
            +
            print(f'User: {question}\nAssistant: {response}')
         | 
| 404 | 
            +
             | 
| 405 | 
            +
            question = 'Please write a poem according to the image.'
         | 
| 406 | 
            +
            response, history = model.chat(tokenizer, pixel_values, question, generation_config, history=history, return_history=True)
         | 
| 407 | 
            +
            print(f'User: {question}\nAssistant: {response}')
         | 
| 408 | 
            +
             | 
| 409 | 
            +
            # multi-image multi-round conversation, combined images (多图多轮对话,拼接图像)
         | 
| 410 | 
            +
            pixel_values1 = load_image('./examples/image1.jpg', max_num=12).to(torch.bfloat16).cuda()
         | 
| 411 | 
            +
            pixel_values2 = load_image('./examples/image2.jpg', max_num=12).to(torch.bfloat16).cuda()
         | 
| 412 | 
            +
            pixel_values = torch.cat((pixel_values1, pixel_values2), dim=0)
         | 
| 413 | 
            +
             | 
| 414 | 
            +
            question = '<image>\nDescribe the two images in detail.'
         | 
| 415 | 
            +
            response, history = model.chat(tokenizer, pixel_values, question, generation_config,
         | 
| 416 | 
            +
                                           history=None, return_history=True)
         | 
| 417 | 
            +
            print(f'User: {question}\nAssistant: {response}')
         | 
| 418 | 
            +
             | 
| 419 | 
            +
            question = 'What are the similarities and differences between these two images.'
         | 
| 420 | 
            +
            response, history = model.chat(tokenizer, pixel_values, question, generation_config,
         | 
| 421 | 
            +
                                           history=history, return_history=True)
         | 
| 422 | 
            +
            print(f'User: {question}\nAssistant: {response}')
         | 
| 423 | 
            +
             | 
| 424 | 
            +
            # multi-image multi-round conversation, separate images (多图多轮对话,独立图像)
         | 
| 425 | 
            +
            pixel_values1 = load_image('./examples/image1.jpg', max_num=12).to(torch.bfloat16).cuda()
         | 
| 426 | 
            +
            pixel_values2 = load_image('./examples/image2.jpg', max_num=12).to(torch.bfloat16).cuda()
         | 
| 427 | 
            +
            pixel_values = torch.cat((pixel_values1, pixel_values2), dim=0)
         | 
| 428 | 
            +
            num_patches_list = [pixel_values1.size(0), pixel_values2.size(0)]
         | 
| 429 | 
            +
             | 
| 430 | 
            +
            question = 'Image-1: <image>\nImage-2: <image>\nDescribe the two images in detail.'
         | 
| 431 | 
            +
            response, history = model.chat(tokenizer, pixel_values, question, generation_config,
         | 
| 432 | 
            +
                                           num_patches_list=num_patches_list,
         | 
| 433 | 
            +
                                           history=None, return_history=True)
         | 
| 434 | 
            +
            print(f'User: {question}\nAssistant: {response}')
         | 
| 435 | 
            +
             | 
| 436 | 
            +
            question = 'What are the similarities and differences between these two images.'
         | 
| 437 | 
            +
            response, history = model.chat(tokenizer, pixel_values, question, generation_config,
         | 
| 438 | 
            +
                                           num_patches_list=num_patches_list,
         | 
| 439 | 
            +
                                           history=history, return_history=True)
         | 
| 440 | 
            +
            print(f'User: {question}\nAssistant: {response}')
         | 
| 441 | 
            +
             | 
| 442 | 
            +
            # batch inference, single image per sample (单图批处理)
         | 
| 443 | 
            +
            pixel_values1 = load_image('./examples/image1.jpg', max_num=12).to(torch.bfloat16).cuda()
         | 
| 444 | 
            +
            pixel_values2 = load_image('./examples/image2.jpg', max_num=12).to(torch.bfloat16).cuda()
         | 
| 445 | 
            +
            num_patches_list = [pixel_values1.size(0), pixel_values2.size(0)]
         | 
| 446 | 
            +
            pixel_values = torch.cat((pixel_values1, pixel_values2), dim=0)
         | 
| 447 | 
            +
             | 
| 448 | 
            +
            questions = ['<image>\nDescribe the image in detail.'] * len(num_patches_list)
         | 
| 449 | 
            +
            responses = model.batch_chat(tokenizer, pixel_values,
         | 
| 450 | 
            +
                                         num_patches_list=num_patches_list,
         | 
| 451 | 
            +
                                         questions=questions,
         | 
| 452 | 
            +
                                         generation_config=generation_config)
         | 
| 453 | 
            +
            for question, response in zip(questions, responses):
         | 
| 454 | 
            +
                print(f'User: {question}\nAssistant: {response}')
         | 
| 455 | 
            +
             | 
| 456 | 
            +
            # video multi-round conversation (视频多轮对话)
         | 
| 457 | 
            +
            def get_index(bound, fps, max_frame, first_idx=0, num_segments=32):
         | 
| 458 | 
            +
                if bound:
         | 
| 459 | 
            +
                    start, end = bound[0], bound[1]
         | 
| 460 | 
            +
                else:
         | 
| 461 | 
            +
                    start, end = -100000, 100000
         | 
| 462 | 
            +
                start_idx = max(first_idx, round(start * fps))
         | 
| 463 | 
            +
                end_idx = min(round(end * fps), max_frame)
         | 
| 464 | 
            +
                seg_size = float(end_idx - start_idx) / num_segments
         | 
| 465 | 
            +
                frame_indices = np.array([
         | 
| 466 | 
            +
                    int(start_idx + (seg_size / 2) + np.round(seg_size * idx))
         | 
| 467 | 
            +
                    for idx in range(num_segments)
         | 
| 468 | 
            +
                ])
         | 
| 469 | 
            +
                return frame_indices
         | 
| 470 | 
            +
             | 
| 471 | 
            +
            def load_video(video_path, bound=None, input_size=448, max_num=1, num_segments=32):
         | 
| 472 | 
            +
                vr = VideoReader(video_path, ctx=cpu(0), num_threads=1)
         | 
| 473 | 
            +
                max_frame = len(vr) - 1
         | 
| 474 | 
            +
                fps = float(vr.get_avg_fps())
         | 
| 475 | 
            +
             | 
| 476 | 
            +
                pixel_values_list, num_patches_list = [], []
         | 
| 477 | 
            +
                transform = build_transform(input_size=input_size)
         | 
| 478 | 
            +
                frame_indices = get_index(bound, fps, max_frame, first_idx=0, num_segments=num_segments)
         | 
| 479 | 
            +
                for frame_index in frame_indices:
         | 
| 480 | 
            +
                    img = Image.fromarray(vr[frame_index].asnumpy()).convert('RGB')
         | 
| 481 | 
            +
                    img = dynamic_preprocess(img, image_size=input_size, use_thumbnail=True, max_num=max_num)
         | 
| 482 | 
            +
                    pixel_values = [transform(tile) for tile in img]
         | 
| 483 | 
            +
                    pixel_values = torch.stack(pixel_values)
         | 
| 484 | 
            +
                    num_patches_list.append(pixel_values.shape[0])
         | 
| 485 | 
            +
                    pixel_values_list.append(pixel_values)
         | 
| 486 | 
            +
                pixel_values = torch.cat(pixel_values_list)
         | 
| 487 | 
            +
                return pixel_values, num_patches_list
         | 
| 488 | 
            +
             | 
| 489 | 
            +
            video_path = './examples/red-panda.mp4'
         | 
| 490 | 
            +
            pixel_values, num_patches_list = load_video(video_path, num_segments=8, max_num=1)
         | 
| 491 | 
            +
            pixel_values = pixel_values.to(torch.bfloat16).cuda()
         | 
| 492 | 
            +
            video_prefix = ''.join([f'Frame{i+1}: <image>\n' for i in range(len(num_patches_list))])
         | 
| 493 | 
            +
            question = video_prefix + 'What is the red panda doing?'
         | 
| 494 | 
            +
            # Frame1: <image>\nFrame2: <image>\n...\nFrame8: <image>\n{question}
         | 
| 495 | 
            +
            response, history = model.chat(tokenizer, pixel_values, question, generation_config,
         | 
| 496 | 
            +
                                           num_patches_list=num_patches_list, history=None, return_history=True)
         | 
| 497 | 
            +
            print(f'User: {question}\nAssistant: {response}')
         | 
| 498 | 
            +
             | 
| 499 | 
            +
            question = 'Describe this video in detail.'
         | 
| 500 | 
            +
            response, history = model.chat(tokenizer, pixel_values, question, generation_config,
         | 
| 501 | 
            +
                                           num_patches_list=num_patches_list, history=history, return_history=True)
         | 
| 502 | 
            +
            print(f'User: {question}\nAssistant: {response}')
         | 
| 503 | 
            +
            ```
         | 
| 504 | 
            +
             | 
| 505 | 
            +
            #### Streaming Output
         | 
| 506 | 
            +
             | 
| 507 | 
            +
            Besides this method, you can also use the following code to get streamed output.
         | 
| 508 | 
            +
             | 
| 509 | 
            +
            ```python
         | 
| 510 | 
            +
            from transformers import TextIteratorStreamer
         | 
| 511 | 
            +
            from threading import Thread
         | 
| 512 | 
            +
             | 
| 513 | 
            +
            # Initialize the streamer
         | 
| 514 | 
            +
            streamer = TextIteratorStreamer(tokenizer, skip_prompt=True, skip_special_tokens=True, timeout=10)
         | 
| 515 | 
            +
            # Define the generation configuration
         | 
| 516 | 
            +
            generation_config = dict(max_new_tokens=1024, do_sample=False, streamer=streamer)
         | 
| 517 | 
            +
            # Start the model chat in a separate thread
         | 
| 518 | 
            +
            thread = Thread(target=model.chat, kwargs=dict(
         | 
| 519 | 
            +
                tokenizer=tokenizer, pixel_values=pixel_values, question=question,
         | 
| 520 | 
            +
                history=None, return_history=False, generation_config=generation_config,
         | 
| 521 | 
            +
            ))
         | 
| 522 | 
            +
            thread.start()
         | 
| 523 | 
            +
             | 
| 524 | 
            +
            # Initialize an empty string to store the generated text
         | 
| 525 | 
            +
            generated_text = ''
         | 
| 526 | 
            +
            # Loop through the streamer to get the new text as it is generated
         | 
| 527 | 
            +
            for new_text in streamer:
         | 
| 528 | 
            +
                if new_text == model.conv_template.sep:
         | 
| 529 | 
            +
                    break
         | 
| 530 | 
            +
                generated_text += new_text
         | 
| 531 | 
            +
                print(new_text, end='', flush=True)  # Print each new chunk of generated text on the same line
         | 
| 532 | 
            +
            ```
         | 
| 533 | 
            +
             | 
| 534 | 
            +
            ## Finetune
         | 
| 535 | 
            +
             | 
| 536 | 
            +
            Many repositories now support fine-tuning of the InternVL series models, including [InternVL](https://github.com/OpenGVLab/InternVL), [SWIFT](https://github.com/modelscope/ms-swift), [XTurner](https://github.com/InternLM/xtuner), and others. Please refer to their documentation for more details on fine-tuning.
         | 
| 537 | 
            +
             | 
| 538 | 
            +
            ## Deployment
         | 
| 539 | 
            +
             | 
| 540 | 
            +
            ### LMDeploy
         | 
| 541 | 
            +
             | 
| 542 | 
            +
            LMDeploy is a toolkit for compressing, deploying, and serving LLMs & VLMs.
         | 
| 543 | 
            +
             | 
| 544 | 
            +
            ```sh
         | 
| 545 | 
            +
            # if lmdeploy<0.7.3, you need to explicitly set chat_template_config=ChatTemplateConfig(model_name='internvl2_5')
         | 
| 546 | 
            +
            pip install lmdeploy>=0.7.3
         | 
| 547 | 
            +
            ```
         | 
| 548 | 
            +
             | 
| 549 | 
            +
            LMDeploy abstracts the complex inference process of multi-modal Vision-Language Models (VLM) into an easy-to-use pipeline, similar to the Large Language Model (LLM) inference pipeline.
         | 
| 550 | 
            +
             | 
| 551 | 
            +
            #### A 'Hello, world' Example
         | 
| 552 | 
            +
             | 
| 553 | 
            +
            ```python
         | 
| 554 | 
            +
            from lmdeploy import pipeline, TurbomindEngineConfig, ChatTemplateConfig
         | 
| 555 | 
            +
            from lmdeploy.vl import load_image
         | 
| 556 | 
            +
             | 
| 557 | 
            +
            model = 'OpenGVLab/InternVL3-8B'
         | 
| 558 | 
            +
            image = load_image('https://raw.githubusercontent.com/open-mmlab/mmdeploy/main/tests/data/tiger.jpeg')
         | 
| 559 | 
            +
            pipe = pipeline(model, backend_config=TurbomindEngineConfig(session_len=16384, tp=1), chat_template_config=ChatTemplateConfig(model_name='internvl2_5'))
         | 
| 560 | 
            +
            response = pipe(('describe this image', image))
         | 
| 561 | 
            +
            print(response.text)
         | 
| 562 | 
            +
            ```
         | 
| 563 | 
            +
             | 
| 564 | 
            +
            If `ImportError` occurs while executing this case, please install the required dependency packages as prompted.
         | 
| 565 | 
            +
             | 
| 566 | 
            +
            #### Multi-images Inference
         | 
| 567 | 
            +
             | 
| 568 | 
            +
            When dealing with multiple images, you can put them all in one list. Keep in mind that multiple images will lead to a higher number of input tokens, and as a result, the size of the context window typically needs to be increased.
         | 
| 569 | 
            +
             | 
| 570 | 
            +
            ```python
         | 
| 571 | 
            +
            from lmdeploy import pipeline, TurbomindEngineConfig, ChatTemplateConfig
         | 
| 572 | 
            +
            from lmdeploy.vl import load_image
         | 
| 573 | 
            +
            from lmdeploy.vl.constants import IMAGE_TOKEN
         | 
| 574 | 
            +
             | 
| 575 | 
            +
            model = 'OpenGVLab/InternVL3-8B'
         | 
| 576 | 
            +
            pipe = pipeline(model, backend_config=TurbomindEngineConfig(session_len=16384, tp=1), chat_template_config=ChatTemplateConfig(model_name='internvl2_5'))
         | 
| 577 | 
            +
             | 
| 578 | 
            +
            image_urls=[
         | 
| 579 | 
            +
                'https://raw.githubusercontent.com/open-mmlab/mmdeploy/main/demo/resources/human-pose.jpg',
         | 
| 580 | 
            +
                'https://raw.githubusercontent.com/open-mmlab/mmdeploy/main/demo/resources/det.jpg'
         | 
| 581 | 
            +
            ]
         | 
| 582 | 
            +
             | 
| 583 | 
            +
            images = [load_image(img_url) for img_url in image_urls]
         | 
| 584 | 
            +
            # Numbering images improves multi-image conversations
         | 
| 585 | 
            +
            response = pipe((f'Image-1: {IMAGE_TOKEN}\nImage-2: {IMAGE_TOKEN}\ndescribe these two images', images))
         | 
| 586 | 
            +
            print(response.text)
         | 
| 587 | 
            +
            ```
         | 
| 588 | 
            +
             | 
| 589 | 
            +
            #### Batch Prompts Inference
         | 
| 590 | 
            +
             | 
| 591 | 
            +
            Conducting inference with batch prompts is quite straightforward; just place them within a list structure:
         | 
| 592 | 
            +
             | 
| 593 | 
            +
            ```python
         | 
| 594 | 
            +
            from lmdeploy import pipeline, TurbomindEngineConfig, ChatTemplateConfig
         | 
| 595 | 
            +
            from lmdeploy.vl import load_image
         | 
| 596 | 
            +
             | 
| 597 | 
            +
            model = 'OpenGVLab/InternVL3-8B'
         | 
| 598 | 
            +
            pipe = pipeline(model, backend_config=TurbomindEngineConfig(session_len=16384, tp=1), chat_template_config=ChatTemplateConfig(model_name='internvl2_5'))
         | 
| 599 | 
            +
             | 
| 600 | 
            +
            image_urls=[
         | 
| 601 | 
            +
                "https://raw.githubusercontent.com/open-mmlab/mmdeploy/main/demo/resources/human-pose.jpg",
         | 
| 602 | 
            +
                "https://raw.githubusercontent.com/open-mmlab/mmdeploy/main/demo/resources/det.jpg"
         | 
| 603 | 
            +
            ]
         | 
| 604 | 
            +
            prompts = [('describe this image', load_image(img_url)) for img_url in image_urls]
         | 
| 605 | 
            +
            response = pipe(prompts)
         | 
| 606 | 
            +
            print(response)
         | 
| 607 | 
            +
            ```
         | 
| 608 | 
            +
             | 
| 609 | 
            +
            #### Multi-turn Conversation
         | 
| 610 | 
            +
             | 
| 611 | 
            +
            There are two ways to do the multi-turn conversations with the pipeline. One is to construct messages according to the format of OpenAI and use above introduced method, the other is to use the `pipeline.chat` interface.
         | 
| 612 | 
            +
             | 
| 613 | 
            +
            ```python
         | 
| 614 | 
            +
            from lmdeploy import pipeline, TurbomindEngineConfig, GenerationConfig, ChatTemplateConfig
         | 
| 615 | 
            +
            from lmdeploy.vl import load_image
         | 
| 616 | 
            +
             | 
| 617 | 
            +
            model = 'OpenGVLab/InternVL3-8B'
         | 
| 618 | 
            +
            pipe = pipeline(model, backend_config=TurbomindEngineConfig(session_len=16384, tp=1), chat_template_config=ChatTemplateConfig(model_name='internvl2_5'))
         | 
| 619 | 
            +
             | 
| 620 | 
            +
            image = load_image('https://raw.githubusercontent.com/open-mmlab/mmdeploy/main/demo/resources/human-pose.jpg')
         | 
| 621 | 
            +
            gen_config = GenerationConfig(top_k=40, top_p=0.8, temperature=0.8)
         | 
| 622 | 
            +
            sess = pipe.chat(('describe this image', image), gen_config=gen_config)
         | 
| 623 | 
            +
            print(sess.response.text)
         | 
| 624 | 
            +
            sess = pipe.chat('What is the woman doing?', session=sess, gen_config=gen_config)
         | 
| 625 | 
            +
            print(sess.response.text)
         | 
| 626 | 
            +
            ```
         | 
| 627 | 
            +
             | 
| 628 | 
            +
            #### Service
         | 
| 629 | 
            +
             | 
| 630 | 
            +
            LMDeploy's `api_server` enables models to be easily packed into services with a single command. The provided RESTful APIs are compatible with OpenAI's interfaces. Below are an example of service startup:
         | 
| 631 | 
            +
             | 
| 632 | 
            +
            ```shell
         | 
| 633 | 
            +
            lmdeploy serve api_server OpenGVLab/InternVL3-8B --chat-template internvl2_5 --server-port 23333 --tp 1
         | 
| 634 | 
            +
            ```
         | 
| 635 | 
            +
             | 
| 636 | 
            +
            To use the OpenAI-style interface, you need to install OpenAI:
         | 
| 637 | 
            +
             | 
| 638 | 
            +
            ```shell
         | 
| 639 | 
            +
            pip install openai
         | 
| 640 | 
            +
            ```
         | 
| 641 | 
            +
             | 
| 642 | 
            +
            Then, use the code below to make the API call:
         | 
| 643 | 
            +
             | 
| 644 | 
            +
            ```python
         | 
| 645 | 
            +
            from openai import OpenAI
         | 
| 646 | 
            +
             | 
| 647 | 
            +
            client = OpenAI(api_key='YOUR_API_KEY', base_url='http://0.0.0.0:23333/v1')
         | 
| 648 | 
            +
            model_name = client.models.list().data[0].id
         | 
| 649 | 
            +
            response = client.chat.completions.create(
         | 
| 650 | 
            +
                model=model_name,
         | 
| 651 | 
            +
                messages=[{
         | 
| 652 | 
            +
                    'role':
         | 
| 653 | 
            +
                    'user',
         | 
| 654 | 
            +
                    'content': [{
         | 
| 655 | 
            +
                        'type': 'text',
         | 
| 656 | 
            +
                        'text': 'describe this image',
         | 
| 657 | 
            +
                    }, {
         | 
| 658 | 
            +
                        'type': 'image_url',
         | 
| 659 | 
            +
                        'image_url': {
         | 
| 660 | 
            +
                            'url':
         | 
| 661 | 
            +
                            'https://modelscope.oss-cn-beijing.aliyuncs.com/resource/tiger.jpeg',
         | 
| 662 | 
            +
                        },
         | 
| 663 | 
            +
                    }],
         | 
| 664 | 
            +
                }],
         | 
| 665 | 
            +
                temperature=0.8,
         | 
| 666 | 
            +
                top_p=0.8)
         | 
| 667 | 
            +
            print(response)
         | 
| 668 | 
            +
            ```
         | 
| 669 | 
            +
             | 
| 670 | 
            +
            ## License
         | 
| 671 | 
            +
             | 
| 672 | 
            +
            This project is released under the MIT License. This project uses the pre-trained Qwen2.5 as a component, which is licensed under the Qwen License.
         | 
| 673 | 
            +
             | 
| 674 | 
            +
            ## Citation
         | 
| 675 | 
            +
             | 
| 676 | 
            +
            If you find this project useful in your research, please consider citing:
         | 
| 677 | 
            +
             | 
| 678 | 
            +
            ```BibTeX
         | 
| 679 | 
            +
            @article{chen2024expanding,
         | 
| 680 | 
            +
              title={Expanding Performance Boundaries of Open-Source Multimodal Models with Model, Data, and Test-Time Scaling},
         | 
| 681 | 
            +
              author={Chen, Zhe and Wang, Weiyun and Cao, Yue and Liu, Yangzhou and Gao, Zhangwei and Cui, Erfei and Zhu, Jinguo and Ye, Shenglong and Tian, Hao and Liu, Zhaoyang and others},
         | 
| 682 | 
            +
              journal={arXiv preprint arXiv:2412.05271},
         | 
| 683 | 
            +
              year={2024}
         | 
| 684 | 
            +
            }
         | 
| 685 | 
            +
            @article{wang2024mpo,
         | 
| 686 | 
            +
              title={Enhancing the Reasoning Ability of Multimodal Large Language Models via Mixed Preference Optimization},
         | 
| 687 | 
            +
              author={Wang, Weiyun and Chen, Zhe and Wang, Wenhai and Cao, Yue and Liu, Yangzhou and Gao, Zhangwei and Zhu, Jinguo and Zhu, Xizhou and Lu, Lewei and Qiao, Yu and Dai, Jifeng},
         | 
| 688 | 
            +
              journal={arXiv preprint arXiv:2411.10442},
         | 
| 689 | 
            +
              year={2024}
         | 
| 690 | 
            +
            }
         | 
| 691 | 
            +
            @article{chen2024far,
         | 
| 692 | 
            +
              title={How Far Are We to GPT-4V? Closing the Gap to Commercial Multimodal Models with Open-Source Suites},
         | 
| 693 | 
            +
              author={Chen, Zhe and Wang, Weiyun and Tian, Hao and Ye, Shenglong and Gao, Zhangwei and Cui, Erfei and Tong, Wenwen and Hu, Kongzhi and Luo, Jiapeng and Ma, Zheng and others},
         | 
| 694 | 
            +
              journal={arXiv preprint arXiv:2404.16821},
         | 
| 695 | 
            +
              year={2024}
         | 
| 696 | 
            +
            }
         | 
| 697 | 
            +
            @inproceedings{chen2024internvl,
         | 
| 698 | 
            +
              title={Internvl: Scaling up vision foundation models and aligning for generic visual-linguistic tasks},
         | 
| 699 | 
            +
              author={Chen, Zhe and Wu, Jiannan and Wang, Wenhai and Su, Weijie and Chen, Guo and Xing, Sen and Zhong, Muyan and Zhang, Qinglong and Zhu, Xizhou and Lu, Lewei and others},
         | 
| 700 | 
            +
              booktitle={Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition},
         | 
| 701 | 
            +
              pages={24185--24198},
         | 
| 702 | 
            +
              year={2024}
         | 
| 703 | 
            +
            }
         | 
| 704 | 
            +
            ```
         | 
    	
        added_tokens.json
    ADDED
    
    | @@ -0,0 +1,33 @@ | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            {
         | 
| 2 | 
            +
              "</box>": 151673,
         | 
| 3 | 
            +
              "</img>": 151666,
         | 
| 4 | 
            +
              "</quad>": 151669,
         | 
| 5 | 
            +
              "</ref>": 151671,
         | 
| 6 | 
            +
              "</tool_call>": 151658,
         | 
| 7 | 
            +
              "<IMG_CONTEXT>": 151667,
         | 
| 8 | 
            +
              "<box>": 151672,
         | 
| 9 | 
            +
              "<img>": 151665,
         | 
| 10 | 
            +
              "<quad>": 151668,
         | 
| 11 | 
            +
              "<ref>": 151670,
         | 
| 12 | 
            +
              "<tool_call>": 151657,
         | 
| 13 | 
            +
              "<|box_end|>": 151649,
         | 
| 14 | 
            +
              "<|box_start|>": 151648,
         | 
| 15 | 
            +
              "<|endoftext|>": 151643,
         | 
| 16 | 
            +
              "<|file_sep|>": 151664,
         | 
| 17 | 
            +
              "<|fim_middle|>": 151660,
         | 
| 18 | 
            +
              "<|fim_pad|>": 151662,
         | 
| 19 | 
            +
              "<|fim_prefix|>": 151659,
         | 
| 20 | 
            +
              "<|fim_suffix|>": 151661,
         | 
| 21 | 
            +
              "<|im_end|>": 151645,
         | 
| 22 | 
            +
              "<|im_start|>": 151644,
         | 
| 23 | 
            +
              "<|image_pad|>": 151655,
         | 
| 24 | 
            +
              "<|object_ref_end|>": 151647,
         | 
| 25 | 
            +
              "<|object_ref_start|>": 151646,
         | 
| 26 | 
            +
              "<|quad_end|>": 151651,
         | 
| 27 | 
            +
              "<|quad_start|>": 151650,
         | 
| 28 | 
            +
              "<|repo_name|>": 151663,
         | 
| 29 | 
            +
              "<|video_pad|>": 151656,
         | 
| 30 | 
            +
              "<|vision_end|>": 151653,
         | 
| 31 | 
            +
              "<|vision_pad|>": 151654,
         | 
| 32 | 
            +
              "<|vision_start|>": 151652
         | 
| 33 | 
            +
            }
         | 
    	
        config.json
    ADDED
    
    | @@ -0,0 +1,220 @@ | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            {
         | 
| 2 | 
            +
              "_commit_hash": null,
         | 
| 3 | 
            +
              "_name_or_path": "/mnt/petrelfs/share_data/wangweiyun/share_internvl_preview/InternVL3-8B-Pretrain",
         | 
| 4 | 
            +
              "architectures": [
         | 
| 5 | 
            +
                "InternVLChatModel"
         | 
| 6 | 
            +
              ],
         | 
| 7 | 
            +
              "auto_map": {
         | 
| 8 | 
            +
                "AutoConfig": "configuration_internvl_chat.InternVLChatConfig",
         | 
| 9 | 
            +
                "AutoModel": "modeling_internvl_chat.InternVLChatModel",
         | 
| 10 | 
            +
                "AutoModelForCausalLM": "modeling_internvl_chat.InternVLChatModel"
         | 
| 11 | 
            +
              },
         | 
| 12 | 
            +
              "downsample_ratio": 0.5,
         | 
| 13 | 
            +
              "dynamic_image_size": true,
         | 
| 14 | 
            +
              "force_image_size": 448,
         | 
| 15 | 
            +
              "image_fold": null,
         | 
| 16 | 
            +
              "llm_config": {
         | 
| 17 | 
            +
                "_name_or_path": "./pretrained/Qwen2.5-32B-Instruct",
         | 
| 18 | 
            +
                "add_cross_attention": false,
         | 
| 19 | 
            +
                "architectures": [
         | 
| 20 | 
            +
                  "Qwen2ForCausalLM"
         | 
| 21 | 
            +
                ],
         | 
| 22 | 
            +
                "attention_dropout": 0.0,
         | 
| 23 | 
            +
                "bad_words_ids": null,
         | 
| 24 | 
            +
                "begin_suppress_tokens": null,
         | 
| 25 | 
            +
                "bos_token_id": 151643,
         | 
| 26 | 
            +
                "chunk_size_feed_forward": 0,
         | 
| 27 | 
            +
                "cross_attention_hidden_size": null,
         | 
| 28 | 
            +
                "decoder_start_token_id": null,
         | 
| 29 | 
            +
                "diversity_penalty": 0.0,
         | 
| 30 | 
            +
                "do_sample": false,
         | 
| 31 | 
            +
                "early_stopping": false,
         | 
| 32 | 
            +
                "encoder_no_repeat_ngram_size": 0,
         | 
| 33 | 
            +
                "eos_token_id": 151643,
         | 
| 34 | 
            +
                "exponential_decay_length_penalty": null,
         | 
| 35 | 
            +
                "finetuning_task": null,
         | 
| 36 | 
            +
                "forced_bos_token_id": null,
         | 
| 37 | 
            +
                "forced_eos_token_id": null,
         | 
| 38 | 
            +
                "hidden_act": "silu",
         | 
| 39 | 
            +
                "hidden_size": 3584,
         | 
| 40 | 
            +
                "id2label": {
         | 
| 41 | 
            +
                  "0": "LABEL_0",
         | 
| 42 | 
            +
                  "1": "LABEL_1"
         | 
| 43 | 
            +
                },
         | 
| 44 | 
            +
                "initializer_range": 0.02,
         | 
| 45 | 
            +
                "intermediate_size": 18944,
         | 
| 46 | 
            +
                "is_decoder": false,
         | 
| 47 | 
            +
                "is_encoder_decoder": false,
         | 
| 48 | 
            +
                "label2id": {
         | 
| 49 | 
            +
                  "LABEL_0": 0,
         | 
| 50 | 
            +
                  "LABEL_1": 1
         | 
| 51 | 
            +
                },
         | 
| 52 | 
            +
                "length_penalty": 1.0,
         | 
| 53 | 
            +
                "max_length": 20,
         | 
| 54 | 
            +
                "max_position_embeddings": 32768,
         | 
| 55 | 
            +
                "max_window_layers": 70,
         | 
| 56 | 
            +
                "min_length": 0,
         | 
| 57 | 
            +
                "model_type": "qwen2",
         | 
| 58 | 
            +
                "moe_config": null,
         | 
| 59 | 
            +
                "no_repeat_ngram_size": 0,
         | 
| 60 | 
            +
                "num_attention_heads": 28,
         | 
| 61 | 
            +
                "num_beam_groups": 1,
         | 
| 62 | 
            +
                "num_beams": 1,
         | 
| 63 | 
            +
                "num_hidden_layers": 28,
         | 
| 64 | 
            +
                "num_key_value_heads": 4,
         | 
| 65 | 
            +
                "num_return_sequences": 1,
         | 
| 66 | 
            +
                "output_attentions": false,
         | 
| 67 | 
            +
                "output_hidden_states": false,
         | 
| 68 | 
            +
                "output_scores": false,
         | 
| 69 | 
            +
                "pad_token_id": null,
         | 
| 70 | 
            +
                "prefix": null,
         | 
| 71 | 
            +
                "problem_type": null,
         | 
| 72 | 
            +
                "pruned_heads": {},
         | 
| 73 | 
            +
                "remove_invalid_values": false,
         | 
| 74 | 
            +
                "repetition_penalty": 1.0,
         | 
| 75 | 
            +
                "return_dict": true,
         | 
| 76 | 
            +
                "return_dict_in_generate": false,
         | 
| 77 | 
            +
                "rms_norm_eps": 1e-06,
         | 
| 78 | 
            +
                "rope_scaling": {
         | 
| 79 | 
            +
                  "factor": 2.0,
         | 
| 80 | 
            +
                  "rope_type": "dynamic",
         | 
| 81 | 
            +
                  "type": "dynamic"
         | 
| 82 | 
            +
                },
         | 
| 83 | 
            +
                "rope_theta": 1000000.0,
         | 
| 84 | 
            +
                "sep_token_id": null,
         | 
| 85 | 
            +
                "sliding_window": null,
         | 
| 86 | 
            +
                "suppress_tokens": null,
         | 
| 87 | 
            +
                "task_specific_params": null,
         | 
| 88 | 
            +
                "temperature": 1.0,
         | 
| 89 | 
            +
                "tf_legacy_loss": false,
         | 
| 90 | 
            +
                "tie_encoder_decoder": false,
         | 
| 91 | 
            +
                "tie_word_embeddings": false,
         | 
| 92 | 
            +
                "tokenizer_class": null,
         | 
| 93 | 
            +
                "top_k": 50,
         | 
| 94 | 
            +
                "top_p": 1.0,
         | 
| 95 | 
            +
                "torch_dtype": "bfloat16",
         | 
| 96 | 
            +
                "torchscript": false,
         | 
| 97 | 
            +
                "transformers_version": "4.45.1",
         | 
| 98 | 
            +
                "typical_p": 1.0,
         | 
| 99 | 
            +
                "use_bfloat16": true,
         | 
| 100 | 
            +
                "use_cache": true,
         | 
| 101 | 
            +
                "use_sliding_window": false,
         | 
| 102 | 
            +
                "vocab_size": 151674
         | 
| 103 | 
            +
              },
         | 
| 104 | 
            +
              "max_dynamic_patch": 12,
         | 
| 105 | 
            +
              "min_dynamic_patch": 1,
         | 
| 106 | 
            +
              "model_type": "internvl_chat",
         | 
| 107 | 
            +
              "pad2square": false,
         | 
| 108 | 
            +
              "ps_version": "v2",
         | 
| 109 | 
            +
              "select_layer": -1,
         | 
| 110 | 
            +
              "template": "internvl2_5",
         | 
| 111 | 
            +
              "tie_word_embeddings": false,
         | 
| 112 | 
            +
              "torch_dtype": "bfloat16",
         | 
| 113 | 
            +
              "transformers_version": null,
         | 
| 114 | 
            +
              "use_backbone_lora": 0,
         | 
| 115 | 
            +
              "use_llm_lora": 0,
         | 
| 116 | 
            +
              "use_thumbnail": true,
         | 
| 117 | 
            +
              "vision_config": {
         | 
| 118 | 
            +
                "_name_or_path": "OpenGVLab/InternViT-6B-448px-V1-5",
         | 
| 119 | 
            +
                "add_cross_attention": false,
         | 
| 120 | 
            +
                "architectures": [
         | 
| 121 | 
            +
                  "InternVisionModel"
         | 
| 122 | 
            +
                ],
         | 
| 123 | 
            +
                "attention_dropout": 0.0,
         | 
| 124 | 
            +
                "auto_map": {
         | 
| 125 | 
            +
                  "AutoConfig": "configuration_intern_vit.InternVisionConfig",
         | 
| 126 | 
            +
                  "AutoModel": "modeling_intern_vit.InternVisionModel"
         | 
| 127 | 
            +
                },
         | 
| 128 | 
            +
                "bad_words_ids": null,
         | 
| 129 | 
            +
                "begin_suppress_tokens": null,
         | 
| 130 | 
            +
                "bos_token_id": null,
         | 
| 131 | 
            +
                "capacity_factor": 1.2,
         | 
| 132 | 
            +
                "chunk_size_feed_forward": 0,
         | 
| 133 | 
            +
                "cross_attention_hidden_size": null,
         | 
| 134 | 
            +
                "decoder_start_token_id": null,
         | 
| 135 | 
            +
                "diversity_penalty": 0.0,
         | 
| 136 | 
            +
                "do_sample": false,
         | 
| 137 | 
            +
                "drop_path_rate": 0.0,
         | 
| 138 | 
            +
                "dropout": 0.0,
         | 
| 139 | 
            +
                "early_stopping": false,
         | 
| 140 | 
            +
                "encoder_no_repeat_ngram_size": 0,
         | 
| 141 | 
            +
                "eos_token_id": null,
         | 
| 142 | 
            +
                "eval_capacity_factor": 1.4,
         | 
| 143 | 
            +
                "exponential_decay_length_penalty": null,
         | 
| 144 | 
            +
                "finetuning_task": null,
         | 
| 145 | 
            +
                "forced_bos_token_id": null,
         | 
| 146 | 
            +
                "forced_eos_token_id": null,
         | 
| 147 | 
            +
                "hidden_act": "gelu",
         | 
| 148 | 
            +
                "hidden_size": 1024,
         | 
| 149 | 
            +
                "id2label": {
         | 
| 150 | 
            +
                  "0": "LABEL_0",
         | 
| 151 | 
            +
                  "1": "LABEL_1"
         | 
| 152 | 
            +
                },
         | 
| 153 | 
            +
                "image_size": 448,
         | 
| 154 | 
            +
                "initializer_factor": 0.1,
         | 
| 155 | 
            +
                "initializer_range": 1e-10,
         | 
| 156 | 
            +
                "intermediate_size": 4096,
         | 
| 157 | 
            +
                "is_decoder": false,
         | 
| 158 | 
            +
                "is_encoder_decoder": false,
         | 
| 159 | 
            +
                "label2id": {
         | 
| 160 | 
            +
                  "LABEL_0": 0,
         | 
| 161 | 
            +
                  "LABEL_1": 1
         | 
| 162 | 
            +
                },
         | 
| 163 | 
            +
                "laux_allreduce": "all_nodes",
         | 
| 164 | 
            +
                "layer_norm_eps": 1e-06,
         | 
| 165 | 
            +
                "length_penalty": 1.0,
         | 
| 166 | 
            +
                "max_length": 20,
         | 
| 167 | 
            +
                "min_length": 0,
         | 
| 168 | 
            +
                "model_type": "intern_vit_6b",
         | 
| 169 | 
            +
                "moe_coeff_ratio": 0.5,
         | 
| 170 | 
            +
                "moe_intermediate_size": 768,
         | 
| 171 | 
            +
                "moe_output_scale": 4.0,
         | 
| 172 | 
            +
                "no_repeat_ngram_size": 0,
         | 
| 173 | 
            +
                "noisy_gate_policy": "RSample_before",
         | 
| 174 | 
            +
                "norm_type": "layer_norm",
         | 
| 175 | 
            +
                "num_attention_heads": 16,
         | 
| 176 | 
            +
                "num_beam_groups": 1,
         | 
| 177 | 
            +
                "num_beams": 1,
         | 
| 178 | 
            +
                "num_channels": 3,
         | 
| 179 | 
            +
                "num_experts": 8,
         | 
| 180 | 
            +
                "num_hidden_layers": 24,
         | 
| 181 | 
            +
                "num_return_sequences": 1,
         | 
| 182 | 
            +
                "num_routed_experts": 4,
         | 
| 183 | 
            +
                "num_shared_experts": 4,
         | 
| 184 | 
            +
                "output_attentions": false,
         | 
| 185 | 
            +
                "output_hidden_states": false,
         | 
| 186 | 
            +
                "output_scores": false,
         | 
| 187 | 
            +
                "pad_token_id": null,
         | 
| 188 | 
            +
                "patch_size": 14,
         | 
| 189 | 
            +
                "prefix": null,
         | 
| 190 | 
            +
                "problem_type": null,
         | 
| 191 | 
            +
                "pruned_heads": {},
         | 
| 192 | 
            +
                "qk_normalization": false,
         | 
| 193 | 
            +
                "qkv_bias": true,
         | 
| 194 | 
            +
                "remove_invalid_values": false,
         | 
| 195 | 
            +
                "repetition_penalty": 1.0,
         | 
| 196 | 
            +
                "return_dict": true,
         | 
| 197 | 
            +
                "return_dict_in_generate": false,
         | 
| 198 | 
            +
                "sep_token_id": null,
         | 
| 199 | 
            +
                "shared_expert_intermediate_size": 3072,
         | 
| 200 | 
            +
                "suppress_tokens": null,
         | 
| 201 | 
            +
                "task_specific_params": null,
         | 
| 202 | 
            +
                "temperature": 1.0,
         | 
| 203 | 
            +
                "tf_legacy_loss": false,
         | 
| 204 | 
            +
                "tie_encoder_decoder": false,
         | 
| 205 | 
            +
                "tie_word_embeddings": true,
         | 
| 206 | 
            +
                "tokenizer_class": null,
         | 
| 207 | 
            +
                "top_k": 50,
         | 
| 208 | 
            +
                "top_p": 1.0,
         | 
| 209 | 
            +
                "torch_dtype": "bfloat16",
         | 
| 210 | 
            +
                "torchscript": false,
         | 
| 211 | 
            +
                "transformers_version": "4.45.1",
         | 
| 212 | 
            +
                "typical_p": 1.0,
         | 
| 213 | 
            +
                "use_bfloat16": true,
         | 
| 214 | 
            +
                "use_flash_attn": true,
         | 
| 215 | 
            +
                "use_moe": false,
         | 
| 216 | 
            +
                "use_residual": true,
         | 
| 217 | 
            +
                "use_rts": false,
         | 
| 218 | 
            +
                "use_weighted_residual": false
         | 
| 219 | 
            +
              }
         | 
| 220 | 
            +
            }
         | 
    	
        configuration_intern_vit.py
    ADDED
    
    | @@ -0,0 +1,120 @@ | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            # --------------------------------------------------------
         | 
| 2 | 
            +
            # InternVL
         | 
| 3 | 
            +
            # Copyright (c) 2024 OpenGVLab
         | 
| 4 | 
            +
            # Licensed under The MIT License [see LICENSE for details]
         | 
| 5 | 
            +
            # --------------------------------------------------------
         | 
| 6 | 
            +
             | 
| 7 | 
            +
            import os
         | 
| 8 | 
            +
            from typing import Union
         | 
| 9 | 
            +
             | 
| 10 | 
            +
            from transformers.configuration_utils import PretrainedConfig
         | 
| 11 | 
            +
            from transformers.utils import logging
         | 
| 12 | 
            +
             | 
| 13 | 
            +
            logger = logging.get_logger(__name__)
         | 
| 14 | 
            +
             | 
| 15 | 
            +
             | 
| 16 | 
            +
            class InternVisionConfig(PretrainedConfig):
         | 
| 17 | 
            +
                r"""
         | 
| 18 | 
            +
                This is the configuration class to store the configuration of a [`InternVisionModel`]. It is used to
         | 
| 19 | 
            +
                instantiate a vision encoder according to the specified arguments, defining the model architecture.
         | 
| 20 | 
            +
             | 
| 21 | 
            +
                Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
         | 
| 22 | 
            +
                documentation from [`PretrainedConfig`] for more information.
         | 
| 23 | 
            +
             | 
| 24 | 
            +
                Args:
         | 
| 25 | 
            +
                    num_channels (`int`, *optional*, defaults to 3):
         | 
| 26 | 
            +
                        Number of color channels in the input images (e.g., 3 for RGB).
         | 
| 27 | 
            +
                    patch_size (`int`, *optional*, defaults to 14):
         | 
| 28 | 
            +
                        The size (resolution) of each patch.
         | 
| 29 | 
            +
                    image_size (`int`, *optional*, defaults to 224):
         | 
| 30 | 
            +
                        The size (resolution) of each image.
         | 
| 31 | 
            +
                    qkv_bias (`bool`, *optional*, defaults to `False`):
         | 
| 32 | 
            +
                        Whether to add a bias to the queries and values in the self-attention layers.
         | 
| 33 | 
            +
                    hidden_size (`int`, *optional*, defaults to 3200):
         | 
| 34 | 
            +
                        Dimensionality of the encoder layers and the pooler layer.
         | 
| 35 | 
            +
                    num_attention_heads (`int`, *optional*, defaults to 25):
         | 
| 36 | 
            +
                        Number of attention heads for each attention layer in the Transformer encoder.
         | 
| 37 | 
            +
                    intermediate_size (`int`, *optional*, defaults to 12800):
         | 
| 38 | 
            +
                        Dimensionality of the "intermediate" (i.e., feed-forward) layer in the Transformer encoder.
         | 
| 39 | 
            +
                    qk_normalization (`bool`, *optional*, defaults to `True`):
         | 
| 40 | 
            +
                        Whether to normalize the queries and keys in the self-attention layers.
         | 
| 41 | 
            +
                    num_hidden_layers (`int`, *optional*, defaults to 48):
         | 
| 42 | 
            +
                        Number of hidden layers in the Transformer encoder.
         | 
| 43 | 
            +
                    use_flash_attn (`bool`, *optional*, defaults to `True`):
         | 
| 44 | 
            +
                        Whether to use flash attention mechanism.
         | 
| 45 | 
            +
                    hidden_act (`str` or `function`, *optional*, defaults to `"gelu"`):
         | 
| 46 | 
            +
                        The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`,
         | 
| 47 | 
            +
                        `"relu"`, `"selu"` and `"gelu_new"` ``"gelu"` are supported.
         | 
| 48 | 
            +
                    layer_norm_eps (`float`, *optional*, defaults to 1e-6):
         | 
| 49 | 
            +
                        The epsilon used by the layer normalization layers.
         | 
| 50 | 
            +
                    dropout (`float`, *optional*, defaults to 0.0):
         | 
| 51 | 
            +
                        The dropout probability for all fully connected layers in the embeddings, encoder, and pooler.
         | 
| 52 | 
            +
                    drop_path_rate (`float`, *optional*, defaults to 0.0):
         | 
| 53 | 
            +
                        Dropout rate for stochastic depth.
         | 
| 54 | 
            +
                    attention_dropout (`float`, *optional*, defaults to 0.0):
         | 
| 55 | 
            +
                        The dropout ratio for the attention probabilities.
         | 
| 56 | 
            +
                    initializer_range (`float`, *optional*, defaults to 0.02):
         | 
| 57 | 
            +
                        The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
         | 
| 58 | 
            +
                    initializer_factor (`float`, *optional*, defaults to 0.1):
         | 
| 59 | 
            +
                        A factor for layer scale.
         | 
| 60 | 
            +
                """
         | 
| 61 | 
            +
             | 
| 62 | 
            +
                model_type = 'intern_vit_6b'
         | 
| 63 | 
            +
             | 
| 64 | 
            +
                def __init__(
         | 
| 65 | 
            +
                        self,
         | 
| 66 | 
            +
                        num_channels=3,
         | 
| 67 | 
            +
                        patch_size=14,
         | 
| 68 | 
            +
                        image_size=224,
         | 
| 69 | 
            +
                        qkv_bias=False,
         | 
| 70 | 
            +
                        hidden_size=3200,
         | 
| 71 | 
            +
                        num_attention_heads=25,
         | 
| 72 | 
            +
                        intermediate_size=12800,
         | 
| 73 | 
            +
                        qk_normalization=True,
         | 
| 74 | 
            +
                        num_hidden_layers=48,
         | 
| 75 | 
            +
                        use_flash_attn=True,
         | 
| 76 | 
            +
                        hidden_act='gelu',
         | 
| 77 | 
            +
                        norm_type='rms_norm',
         | 
| 78 | 
            +
                        layer_norm_eps=1e-6,
         | 
| 79 | 
            +
                        dropout=0.0,
         | 
| 80 | 
            +
                        drop_path_rate=0.0,
         | 
| 81 | 
            +
                        attention_dropout=0.0,
         | 
| 82 | 
            +
                        initializer_range=0.02,
         | 
| 83 | 
            +
                        initializer_factor=0.1,
         | 
| 84 | 
            +
                        **kwargs,
         | 
| 85 | 
            +
                ):
         | 
| 86 | 
            +
                    super().__init__(**kwargs)
         | 
| 87 | 
            +
             | 
| 88 | 
            +
                    self.hidden_size = hidden_size
         | 
| 89 | 
            +
                    self.intermediate_size = intermediate_size
         | 
| 90 | 
            +
                    self.dropout = dropout
         | 
| 91 | 
            +
                    self.drop_path_rate = drop_path_rate
         | 
| 92 | 
            +
                    self.num_hidden_layers = num_hidden_layers
         | 
| 93 | 
            +
                    self.num_attention_heads = num_attention_heads
         | 
| 94 | 
            +
                    self.num_channels = num_channels
         | 
| 95 | 
            +
                    self.patch_size = patch_size
         | 
| 96 | 
            +
                    self.image_size = image_size
         | 
| 97 | 
            +
                    self.initializer_range = initializer_range
         | 
| 98 | 
            +
                    self.initializer_factor = initializer_factor
         | 
| 99 | 
            +
                    self.attention_dropout = attention_dropout
         | 
| 100 | 
            +
                    self.layer_norm_eps = layer_norm_eps
         | 
| 101 | 
            +
                    self.hidden_act = hidden_act
         | 
| 102 | 
            +
                    self.norm_type = norm_type
         | 
| 103 | 
            +
                    self.qkv_bias = qkv_bias
         | 
| 104 | 
            +
                    self.qk_normalization = qk_normalization
         | 
| 105 | 
            +
                    self.use_flash_attn = use_flash_attn
         | 
| 106 | 
            +
             | 
| 107 | 
            +
                @classmethod
         | 
| 108 | 
            +
                def from_pretrained(cls, pretrained_model_name_or_path: Union[str, os.PathLike], **kwargs) -> 'PretrainedConfig':
         | 
| 109 | 
            +
                    config_dict, kwargs = cls.get_config_dict(pretrained_model_name_or_path, **kwargs)
         | 
| 110 | 
            +
             | 
| 111 | 
            +
                    if 'vision_config' in config_dict:
         | 
| 112 | 
            +
                        config_dict = config_dict['vision_config']
         | 
| 113 | 
            +
             | 
| 114 | 
            +
                    if 'model_type' in config_dict and hasattr(cls, 'model_type') and config_dict['model_type'] != cls.model_type:
         | 
| 115 | 
            +
                        logger.warning(
         | 
| 116 | 
            +
                            f"You are using a model of type {config_dict['model_type']} to instantiate a model of type "
         | 
| 117 | 
            +
                            f'{cls.model_type}. This is not supported for all configurations of models and can yield errors.'
         | 
| 118 | 
            +
                        )
         | 
| 119 | 
            +
             | 
| 120 | 
            +
                    return cls.from_dict(config_dict, **kwargs)
         | 
    	
        configuration_internvl_chat.py
    ADDED
    
    | @@ -0,0 +1,97 @@ | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            # --------------------------------------------------------
         | 
| 2 | 
            +
            # InternVL
         | 
| 3 | 
            +
            # Copyright (c) 2024 OpenGVLab
         | 
| 4 | 
            +
            # Licensed under The MIT License [see LICENSE for details]
         | 
| 5 | 
            +
            # --------------------------------------------------------
         | 
| 6 | 
            +
             | 
| 7 | 
            +
            import copy
         | 
| 8 | 
            +
             | 
| 9 | 
            +
            from transformers import AutoConfig, LlamaConfig, Qwen2Config
         | 
| 10 | 
            +
            from transformers.configuration_utils import PretrainedConfig
         | 
| 11 | 
            +
            from transformers.utils import logging
         | 
| 12 | 
            +
             | 
| 13 | 
            +
            from .configuration_intern_vit import InternVisionConfig
         | 
| 14 | 
            +
             | 
| 15 | 
            +
            logger = logging.get_logger(__name__)
         | 
| 16 | 
            +
             | 
| 17 | 
            +
             | 
| 18 | 
            +
            class InternVLChatConfig(PretrainedConfig):
         | 
| 19 | 
            +
                model_type = 'internvl_chat'
         | 
| 20 | 
            +
                is_composition = True
         | 
| 21 | 
            +
             | 
| 22 | 
            +
                def __init__(
         | 
| 23 | 
            +
                        self,
         | 
| 24 | 
            +
                        vision_config=None,
         | 
| 25 | 
            +
                        llm_config=None,
         | 
| 26 | 
            +
                        use_backbone_lora=0,
         | 
| 27 | 
            +
                        use_llm_lora=0,
         | 
| 28 | 
            +
                        select_layer=-1,
         | 
| 29 | 
            +
                        force_image_size=None,
         | 
| 30 | 
            +
                        downsample_ratio=0.5,
         | 
| 31 | 
            +
                        template=None,
         | 
| 32 | 
            +
                        dynamic_image_size=False,
         | 
| 33 | 
            +
                        use_thumbnail=False,
         | 
| 34 | 
            +
                        ps_version='v1',
         | 
| 35 | 
            +
                        min_dynamic_patch=1,
         | 
| 36 | 
            +
                        max_dynamic_patch=6,
         | 
| 37 | 
            +
                        **kwargs):
         | 
| 38 | 
            +
                    super().__init__(**kwargs)
         | 
| 39 | 
            +
             | 
| 40 | 
            +
                    if vision_config is None:
         | 
| 41 | 
            +
                        vision_config = {'architectures': ['InternVisionModel']}
         | 
| 42 | 
            +
                        logger.info('vision_config is None. Initializing the InternVisionConfig with default values.')
         | 
| 43 | 
            +
             | 
| 44 | 
            +
                    if llm_config is None:
         | 
| 45 | 
            +
                        llm_config = {'architectures': ['Qwen2ForCausalLM']}
         | 
| 46 | 
            +
                        logger.info('llm_config is None. Initializing the LlamaConfig config with default values (`LlamaConfig`).')
         | 
| 47 | 
            +
             | 
| 48 | 
            +
                    self.vision_config = InternVisionConfig(**vision_config)
         | 
| 49 | 
            +
                    if llm_config.get('architectures')[0] == 'LlamaForCausalLM':
         | 
| 50 | 
            +
                        self.llm_config = LlamaConfig(**llm_config)
         | 
| 51 | 
            +
                    elif llm_config.get('architectures')[0] == 'Qwen2ForCausalLM':
         | 
| 52 | 
            +
                        self.llm_config = Qwen2Config(**llm_config)
         | 
| 53 | 
            +
                    else:
         | 
| 54 | 
            +
                        raise ValueError('Unsupported architecture: {}'.format(llm_config.get('architectures')[0]))
         | 
| 55 | 
            +
                    self.use_backbone_lora = use_backbone_lora
         | 
| 56 | 
            +
                    self.use_llm_lora = use_llm_lora
         | 
| 57 | 
            +
                    self.select_layer = select_layer
         | 
| 58 | 
            +
                    self.force_image_size = force_image_size
         | 
| 59 | 
            +
                    self.downsample_ratio = downsample_ratio
         | 
| 60 | 
            +
                    self.template = template
         | 
| 61 | 
            +
                    self.dynamic_image_size = dynamic_image_size
         | 
| 62 | 
            +
                    self.use_thumbnail = use_thumbnail
         | 
| 63 | 
            +
                    self.ps_version = ps_version  # pixel shuffle version
         | 
| 64 | 
            +
                    self.min_dynamic_patch = min_dynamic_patch
         | 
| 65 | 
            +
                    self.max_dynamic_patch = max_dynamic_patch
         | 
| 66 | 
            +
                    # By default, we use tie_word_embeddings=False for models of all sizes.
         | 
| 67 | 
            +
                    self.tie_word_embeddings = self.llm_config.tie_word_embeddings
         | 
| 68 | 
            +
             | 
| 69 | 
            +
                    logger.info(f'vision_select_layer: {self.select_layer}')
         | 
| 70 | 
            +
                    logger.info(f'ps_version: {self.ps_version}')
         | 
| 71 | 
            +
                    logger.info(f'min_dynamic_patch: {self.min_dynamic_patch}')
         | 
| 72 | 
            +
                    logger.info(f'max_dynamic_patch: {self.max_dynamic_patch}')
         | 
| 73 | 
            +
             | 
| 74 | 
            +
                def to_dict(self):
         | 
| 75 | 
            +
                    """
         | 
| 76 | 
            +
                    Serializes this instance to a Python dictionary. Override the default [`~PretrainedConfig.to_dict`].
         | 
| 77 | 
            +
             | 
| 78 | 
            +
                    Returns:
         | 
| 79 | 
            +
                        `Dict[str, any]`: Dictionary of all the attributes that make up this configuration instance,
         | 
| 80 | 
            +
                    """
         | 
| 81 | 
            +
                    output = copy.deepcopy(self.__dict__)
         | 
| 82 | 
            +
                    output['vision_config'] = self.vision_config.to_dict()
         | 
| 83 | 
            +
                    output['llm_config'] = self.llm_config.to_dict()
         | 
| 84 | 
            +
                    output['model_type'] = self.__class__.model_type
         | 
| 85 | 
            +
                    output['use_backbone_lora'] = self.use_backbone_lora
         | 
| 86 | 
            +
                    output['use_llm_lora'] = self.use_llm_lora
         | 
| 87 | 
            +
                    output['select_layer'] = self.select_layer
         | 
| 88 | 
            +
                    output['force_image_size'] = self.force_image_size
         | 
| 89 | 
            +
                    output['downsample_ratio'] = self.downsample_ratio
         | 
| 90 | 
            +
                    output['template'] = self.template
         | 
| 91 | 
            +
                    output['dynamic_image_size'] = self.dynamic_image_size
         | 
| 92 | 
            +
                    output['use_thumbnail'] = self.use_thumbnail
         | 
| 93 | 
            +
                    output['ps_version'] = self.ps_version
         | 
| 94 | 
            +
                    output['min_dynamic_patch'] = self.min_dynamic_patch
         | 
| 95 | 
            +
                    output['max_dynamic_patch'] = self.max_dynamic_patch
         | 
| 96 | 
            +
             | 
| 97 | 
            +
                    return output
         | 
    	
        conversation.py
    ADDED
    
    | @@ -0,0 +1,391 @@ | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            """
         | 
| 2 | 
            +
            Conversation prompt templates.
         | 
| 3 | 
            +
             | 
| 4 | 
            +
            We kindly request that you import fastchat instead of copying this file if you wish to use it.
         | 
| 5 | 
            +
            If you have changes in mind, please contribute back so the community can benefit collectively and continue to maintain these valuable templates.
         | 
| 6 | 
            +
             | 
| 7 | 
            +
            Modified from https://github.com/lm-sys/FastChat/blob/main/fastchat/conversation.py
         | 
| 8 | 
            +
            """
         | 
| 9 | 
            +
             | 
| 10 | 
            +
            import dataclasses
         | 
| 11 | 
            +
            from enum import IntEnum, auto
         | 
| 12 | 
            +
            from typing import Dict, List, Tuple, Union
         | 
| 13 | 
            +
             | 
| 14 | 
            +
             | 
| 15 | 
            +
            class SeparatorStyle(IntEnum):
         | 
| 16 | 
            +
                """Separator styles."""
         | 
| 17 | 
            +
             | 
| 18 | 
            +
                ADD_COLON_SINGLE = auto()
         | 
| 19 | 
            +
                ADD_COLON_TWO = auto()
         | 
| 20 | 
            +
                ADD_COLON_SPACE_SINGLE = auto()
         | 
| 21 | 
            +
                NO_COLON_SINGLE = auto()
         | 
| 22 | 
            +
                NO_COLON_TWO = auto()
         | 
| 23 | 
            +
                ADD_NEW_LINE_SINGLE = auto()
         | 
| 24 | 
            +
                LLAMA2 = auto()
         | 
| 25 | 
            +
                CHATGLM = auto()
         | 
| 26 | 
            +
                CHATML = auto()
         | 
| 27 | 
            +
                CHATINTERN = auto()
         | 
| 28 | 
            +
                DOLLY = auto()
         | 
| 29 | 
            +
                RWKV = auto()
         | 
| 30 | 
            +
                PHOENIX = auto()
         | 
| 31 | 
            +
                ROBIN = auto()
         | 
| 32 | 
            +
                FALCON_CHAT = auto()
         | 
| 33 | 
            +
                CHATGLM3 = auto()
         | 
| 34 | 
            +
                INTERNVL_ZH = auto()
         | 
| 35 | 
            +
                MPT = auto()
         | 
| 36 | 
            +
             | 
| 37 | 
            +
             | 
| 38 | 
            +
            @dataclasses.dataclass
         | 
| 39 | 
            +
            class Conversation:
         | 
| 40 | 
            +
                """A class that manages prompt templates and keeps all conversation history."""
         | 
| 41 | 
            +
             | 
| 42 | 
            +
                # The name of this template
         | 
| 43 | 
            +
                name: str
         | 
| 44 | 
            +
                # The template of the system prompt
         | 
| 45 | 
            +
                system_template: str = '{system_message}'
         | 
| 46 | 
            +
                # The system message
         | 
| 47 | 
            +
                system_message: str = ''
         | 
| 48 | 
            +
                # The names of two roles
         | 
| 49 | 
            +
                roles: Tuple[str] = ('USER', 'ASSISTANT')
         | 
| 50 | 
            +
                # All messages. Each item is (role, message).
         | 
| 51 | 
            +
                messages: List[List[str]] = ()
         | 
| 52 | 
            +
                # The number of few shot examples
         | 
| 53 | 
            +
                offset: int = 0
         | 
| 54 | 
            +
                # The separator style and configurations
         | 
| 55 | 
            +
                sep_style: SeparatorStyle = SeparatorStyle.ADD_COLON_SINGLE
         | 
| 56 | 
            +
                sep: str = '\n'
         | 
| 57 | 
            +
                sep2: str = None
         | 
| 58 | 
            +
                # Stop criteria (the default one is EOS token)
         | 
| 59 | 
            +
                stop_str: Union[str, List[str]] = None
         | 
| 60 | 
            +
                # Stops generation if meeting any token in this list
         | 
| 61 | 
            +
                stop_token_ids: List[int] = None
         | 
| 62 | 
            +
             | 
| 63 | 
            +
                def get_prompt(self) -> str:
         | 
| 64 | 
            +
                    """Get the prompt for generation."""
         | 
| 65 | 
            +
                    system_prompt = self.system_template.format(system_message=self.system_message)
         | 
| 66 | 
            +
                    if self.sep_style == SeparatorStyle.ADD_COLON_SINGLE:
         | 
| 67 | 
            +
                        ret = system_prompt + self.sep
         | 
| 68 | 
            +
                        for role, message in self.messages:
         | 
| 69 | 
            +
                            if message:
         | 
| 70 | 
            +
                                ret += role + ': ' + message + self.sep
         | 
| 71 | 
            +
                            else:
         | 
| 72 | 
            +
                                ret += role + ':'
         | 
| 73 | 
            +
                        return ret
         | 
| 74 | 
            +
                    elif self.sep_style == SeparatorStyle.ADD_COLON_TWO:
         | 
| 75 | 
            +
                        seps = [self.sep, self.sep2]
         | 
| 76 | 
            +
                        ret = system_prompt + seps[0]
         | 
| 77 | 
            +
                        for i, (role, message) in enumerate(self.messages):
         | 
| 78 | 
            +
                            if message:
         | 
| 79 | 
            +
                                ret += role + ': ' + message + seps[i % 2]
         | 
| 80 | 
            +
                            else:
         | 
| 81 | 
            +
                                ret += role + ':'
         | 
| 82 | 
            +
                        return ret
         | 
| 83 | 
            +
                    elif self.sep_style == SeparatorStyle.ADD_COLON_SPACE_SINGLE:
         | 
| 84 | 
            +
                        ret = system_prompt + self.sep
         | 
| 85 | 
            +
                        for role, message in self.messages:
         | 
| 86 | 
            +
                            if message:
         | 
| 87 | 
            +
                                ret += role + ': ' + message + self.sep
         | 
| 88 | 
            +
                            else:
         | 
| 89 | 
            +
                                ret += role + ': '  # must be end with a space
         | 
| 90 | 
            +
                        return ret
         | 
| 91 | 
            +
                    elif self.sep_style == SeparatorStyle.ADD_NEW_LINE_SINGLE:
         | 
| 92 | 
            +
                        ret = '' if system_prompt == '' else system_prompt + self.sep
         | 
| 93 | 
            +
                        for role, message in self.messages:
         | 
| 94 | 
            +
                            if message:
         | 
| 95 | 
            +
                                ret += role + '\n' + message + self.sep
         | 
| 96 | 
            +
                            else:
         | 
| 97 | 
            +
                                ret += role + '\n'
         | 
| 98 | 
            +
                        return ret
         | 
| 99 | 
            +
                    elif self.sep_style == SeparatorStyle.NO_COLON_SINGLE:
         | 
| 100 | 
            +
                        ret = system_prompt
         | 
| 101 | 
            +
                        for role, message in self.messages:
         | 
| 102 | 
            +
                            if message:
         | 
| 103 | 
            +
                                ret += role + message + self.sep
         | 
| 104 | 
            +
                            else:
         | 
| 105 | 
            +
                                ret += role
         | 
| 106 | 
            +
                        return ret
         | 
| 107 | 
            +
                    elif self.sep_style == SeparatorStyle.NO_COLON_TWO:
         | 
| 108 | 
            +
                        seps = [self.sep, self.sep2]
         | 
| 109 | 
            +
                        ret = system_prompt
         | 
| 110 | 
            +
                        for i, (role, message) in enumerate(self.messages):
         | 
| 111 | 
            +
                            if message:
         | 
| 112 | 
            +
                                ret += role + message + seps[i % 2]
         | 
| 113 | 
            +
                            else:
         | 
| 114 | 
            +
                                ret += role
         | 
| 115 | 
            +
                        return ret
         | 
| 116 | 
            +
                    elif self.sep_style == SeparatorStyle.RWKV:
         | 
| 117 | 
            +
                        ret = system_prompt
         | 
| 118 | 
            +
                        for i, (role, message) in enumerate(self.messages):
         | 
| 119 | 
            +
                            if message:
         | 
| 120 | 
            +
                                ret += (
         | 
| 121 | 
            +
                                    role
         | 
| 122 | 
            +
                                    + ': '
         | 
| 123 | 
            +
                                    + message.replace('\r\n', '\n').replace('\n\n', '\n')
         | 
| 124 | 
            +
                                )
         | 
| 125 | 
            +
                                ret += '\n\n'
         | 
| 126 | 
            +
                            else:
         | 
| 127 | 
            +
                                ret += role + ':'
         | 
| 128 | 
            +
                        return ret
         | 
| 129 | 
            +
                    elif self.sep_style == SeparatorStyle.LLAMA2:
         | 
| 130 | 
            +
                        seps = [self.sep, self.sep2]
         | 
| 131 | 
            +
                        if self.system_message:
         | 
| 132 | 
            +
                            ret = system_prompt
         | 
| 133 | 
            +
                        else:
         | 
| 134 | 
            +
                            ret = '[INST] '
         | 
| 135 | 
            +
                        for i, (role, message) in enumerate(self.messages):
         | 
| 136 | 
            +
                            tag = self.roles[i % 2]
         | 
| 137 | 
            +
                            if message:
         | 
| 138 | 
            +
                                if i == 0:
         | 
| 139 | 
            +
                                    ret += message + ' '
         | 
| 140 | 
            +
                                else:
         | 
| 141 | 
            +
                                    ret += tag + ' ' + message + seps[i % 2]
         | 
| 142 | 
            +
                            else:
         | 
| 143 | 
            +
                                ret += tag
         | 
| 144 | 
            +
                        return ret
         | 
| 145 | 
            +
                    elif self.sep_style == SeparatorStyle.CHATGLM:
         | 
| 146 | 
            +
                        # source: https://huggingface.co/THUDM/chatglm-6b/blob/1d240ba371910e9282298d4592532d7f0f3e9f3e/modeling_chatglm.py#L1302-L1308
         | 
| 147 | 
            +
                        # source2: https://huggingface.co/THUDM/chatglm2-6b/blob/e186c891cf64310ac66ef10a87e6635fa6c2a579/modeling_chatglm.py#L926
         | 
| 148 | 
            +
                        round_add_n = 1 if self.name == 'chatglm2' else 0
         | 
| 149 | 
            +
                        if system_prompt:
         | 
| 150 | 
            +
                            ret = system_prompt + self.sep
         | 
| 151 | 
            +
                        else:
         | 
| 152 | 
            +
                            ret = ''
         | 
| 153 | 
            +
             | 
| 154 | 
            +
                        for i, (role, message) in enumerate(self.messages):
         | 
| 155 | 
            +
                            if i % 2 == 0:
         | 
| 156 | 
            +
                                ret += f'[Round {i//2 + round_add_n}]{self.sep}'
         | 
| 157 | 
            +
             | 
| 158 | 
            +
                            if message:
         | 
| 159 | 
            +
                                ret += f'{role}:{message}{self.sep}'
         | 
| 160 | 
            +
                            else:
         | 
| 161 | 
            +
                                ret += f'{role}:'
         | 
| 162 | 
            +
                        return ret
         | 
| 163 | 
            +
                    elif self.sep_style == SeparatorStyle.CHATML:
         | 
| 164 | 
            +
                        ret = '' if system_prompt == '' else system_prompt + self.sep + '\n'
         | 
| 165 | 
            +
                        for role, message in self.messages:
         | 
| 166 | 
            +
                            if message:
         | 
| 167 | 
            +
                                ret += role + '\n' + message + self.sep + '\n'
         | 
| 168 | 
            +
                            else:
         | 
| 169 | 
            +
                                ret += role + '\n'
         | 
| 170 | 
            +
                        return ret
         | 
| 171 | 
            +
                    elif self.sep_style == SeparatorStyle.CHATGLM3:
         | 
| 172 | 
            +
                        ret = ''
         | 
| 173 | 
            +
                        if self.system_message:
         | 
| 174 | 
            +
                            ret += system_prompt
         | 
| 175 | 
            +
                        for role, message in self.messages:
         | 
| 176 | 
            +
                            if message:
         | 
| 177 | 
            +
                                ret += role + '\n' + ' ' + message
         | 
| 178 | 
            +
                            else:
         | 
| 179 | 
            +
                                ret += role
         | 
| 180 | 
            +
                        return ret
         | 
| 181 | 
            +
                    elif self.sep_style == SeparatorStyle.CHATINTERN:
         | 
| 182 | 
            +
                        # source: https://huggingface.co/internlm/internlm-chat-7b-8k/blob/bd546fa984b4b0b86958f56bf37f94aa75ab8831/modeling_internlm.py#L771
         | 
| 183 | 
            +
                        seps = [self.sep, self.sep2]
         | 
| 184 | 
            +
                        ret = system_prompt
         | 
| 185 | 
            +
                        for i, (role, message) in enumerate(self.messages):
         | 
| 186 | 
            +
                            # if i % 2 == 0:
         | 
| 187 | 
            +
                            #     ret += "<s>"
         | 
| 188 | 
            +
                            if message:
         | 
| 189 | 
            +
                                ret += role + ':' + message + seps[i % 2] + '\n'
         | 
| 190 | 
            +
                            else:
         | 
| 191 | 
            +
                                ret += role + ':'
         | 
| 192 | 
            +
                        return ret
         | 
| 193 | 
            +
                    elif self.sep_style == SeparatorStyle.DOLLY:
         | 
| 194 | 
            +
                        seps = [self.sep, self.sep2]
         | 
| 195 | 
            +
                        ret = system_prompt
         | 
| 196 | 
            +
                        for i, (role, message) in enumerate(self.messages):
         | 
| 197 | 
            +
                            if message:
         | 
| 198 | 
            +
                                ret += role + ':\n' + message + seps[i % 2]
         | 
| 199 | 
            +
                                if i % 2 == 1:
         | 
| 200 | 
            +
                                    ret += '\n\n'
         | 
| 201 | 
            +
                            else:
         | 
| 202 | 
            +
                                ret += role + ':\n'
         | 
| 203 | 
            +
                        return ret
         | 
| 204 | 
            +
                    elif self.sep_style == SeparatorStyle.PHOENIX:
         | 
| 205 | 
            +
                        ret = system_prompt
         | 
| 206 | 
            +
                        for role, message in self.messages:
         | 
| 207 | 
            +
                            if message:
         | 
| 208 | 
            +
                                ret += role + ': ' + '<s>' + message + '</s>'
         | 
| 209 | 
            +
                            else:
         | 
| 210 | 
            +
                                ret += role + ': ' + '<s>'
         | 
| 211 | 
            +
                        return ret
         | 
| 212 | 
            +
                    elif self.sep_style == SeparatorStyle.ROBIN:
         | 
| 213 | 
            +
                        ret = system_prompt + self.sep
         | 
| 214 | 
            +
                        for role, message in self.messages:
         | 
| 215 | 
            +
                            if message:
         | 
| 216 | 
            +
                                ret += role + ':\n' + message + self.sep
         | 
| 217 | 
            +
                            else:
         | 
| 218 | 
            +
                                ret += role + ':\n'
         | 
| 219 | 
            +
                        return ret
         | 
| 220 | 
            +
                    elif self.sep_style == SeparatorStyle.FALCON_CHAT:
         | 
| 221 | 
            +
                        ret = ''
         | 
| 222 | 
            +
                        if self.system_message:
         | 
| 223 | 
            +
                            ret += system_prompt + self.sep
         | 
| 224 | 
            +
                        for role, message in self.messages:
         | 
| 225 | 
            +
                            if message:
         | 
| 226 | 
            +
                                ret += role + ': ' + message + self.sep
         | 
| 227 | 
            +
                            else:
         | 
| 228 | 
            +
                                ret += role + ':'
         | 
| 229 | 
            +
             | 
| 230 | 
            +
                        return ret
         | 
| 231 | 
            +
                    elif self.sep_style == SeparatorStyle.INTERNVL_ZH:
         | 
| 232 | 
            +
                        seps = [self.sep, self.sep2]
         | 
| 233 | 
            +
                        ret = self.system_message + seps[0]
         | 
| 234 | 
            +
                        for i, (role, message) in enumerate(self.messages):
         | 
| 235 | 
            +
                            if message:
         | 
| 236 | 
            +
                                ret += role + ': ' + message + seps[i % 2]
         | 
| 237 | 
            +
                            else:
         | 
| 238 | 
            +
                                ret += role + ':'
         | 
| 239 | 
            +
                        return ret
         | 
| 240 | 
            +
                    elif self.sep_style == SeparatorStyle.MPT:
         | 
| 241 | 
            +
                        ret = system_prompt + self.sep
         | 
| 242 | 
            +
                        for role, message in self.messages:
         | 
| 243 | 
            +
                            if message:
         | 
| 244 | 
            +
                                if type(message) is tuple:
         | 
| 245 | 
            +
                                    message, _, _ = message
         | 
| 246 | 
            +
                                ret += role + message + self.sep
         | 
| 247 | 
            +
                            else:
         | 
| 248 | 
            +
                                ret += role
         | 
| 249 | 
            +
                        return ret
         | 
| 250 | 
            +
                    else:
         | 
| 251 | 
            +
                        raise ValueError(f'Invalid style: {self.sep_style}')
         | 
| 252 | 
            +
             | 
| 253 | 
            +
                def set_system_message(self, system_message: str):
         | 
| 254 | 
            +
                    """Set the system message."""
         | 
| 255 | 
            +
                    self.system_message = system_message
         | 
| 256 | 
            +
             | 
| 257 | 
            +
                def append_message(self, role: str, message: str):
         | 
| 258 | 
            +
                    """Append a new message."""
         | 
| 259 | 
            +
                    self.messages.append([role, message])
         | 
| 260 | 
            +
             | 
| 261 | 
            +
                def update_last_message(self, message: str):
         | 
| 262 | 
            +
                    """Update the last output.
         | 
| 263 | 
            +
             | 
| 264 | 
            +
                    The last message is typically set to be None when constructing the prompt,
         | 
| 265 | 
            +
                    so we need to update it in-place after getting the response from a model.
         | 
| 266 | 
            +
                    """
         | 
| 267 | 
            +
                    self.messages[-1][1] = message
         | 
| 268 | 
            +
             | 
| 269 | 
            +
                def to_gradio_chatbot(self):
         | 
| 270 | 
            +
                    """Convert the conversation to gradio chatbot format."""
         | 
| 271 | 
            +
                    ret = []
         | 
| 272 | 
            +
                    for i, (role, msg) in enumerate(self.messages[self.offset :]):
         | 
| 273 | 
            +
                        if i % 2 == 0:
         | 
| 274 | 
            +
                            ret.append([msg, None])
         | 
| 275 | 
            +
                        else:
         | 
| 276 | 
            +
                            ret[-1][-1] = msg
         | 
| 277 | 
            +
                    return ret
         | 
| 278 | 
            +
             | 
| 279 | 
            +
                def to_openai_api_messages(self):
         | 
| 280 | 
            +
                    """Convert the conversation to OpenAI chat completion format."""
         | 
| 281 | 
            +
                    ret = [{'role': 'system', 'content': self.system_message}]
         | 
| 282 | 
            +
             | 
| 283 | 
            +
                    for i, (_, msg) in enumerate(self.messages[self.offset :]):
         | 
| 284 | 
            +
                        if i % 2 == 0:
         | 
| 285 | 
            +
                            ret.append({'role': 'user', 'content': msg})
         | 
| 286 | 
            +
                        else:
         | 
| 287 | 
            +
                            if msg is not None:
         | 
| 288 | 
            +
                                ret.append({'role': 'assistant', 'content': msg})
         | 
| 289 | 
            +
                    return ret
         | 
| 290 | 
            +
             | 
| 291 | 
            +
                def copy(self):
         | 
| 292 | 
            +
                    return Conversation(
         | 
| 293 | 
            +
                        name=self.name,
         | 
| 294 | 
            +
                        system_template=self.system_template,
         | 
| 295 | 
            +
                        system_message=self.system_message,
         | 
| 296 | 
            +
                        roles=self.roles,
         | 
| 297 | 
            +
                        messages=[[x, y] for x, y in self.messages],
         | 
| 298 | 
            +
                        offset=self.offset,
         | 
| 299 | 
            +
                        sep_style=self.sep_style,
         | 
| 300 | 
            +
                        sep=self.sep,
         | 
| 301 | 
            +
                        sep2=self.sep2,
         | 
| 302 | 
            +
                        stop_str=self.stop_str,
         | 
| 303 | 
            +
                        stop_token_ids=self.stop_token_ids,
         | 
| 304 | 
            +
                    )
         | 
| 305 | 
            +
             | 
| 306 | 
            +
                def dict(self):
         | 
| 307 | 
            +
                    return {
         | 
| 308 | 
            +
                        'template_name': self.name,
         | 
| 309 | 
            +
                        'system_message': self.system_message,
         | 
| 310 | 
            +
                        'roles': self.roles,
         | 
| 311 | 
            +
                        'messages': self.messages,
         | 
| 312 | 
            +
                        'offset': self.offset,
         | 
| 313 | 
            +
                    }
         | 
| 314 | 
            +
             | 
| 315 | 
            +
             | 
| 316 | 
            +
            # A global registry for all conversation templates
         | 
| 317 | 
            +
            conv_templates: Dict[str, Conversation] = {}
         | 
| 318 | 
            +
             | 
| 319 | 
            +
             | 
| 320 | 
            +
            def register_conv_template(template: Conversation, override: bool = False):
         | 
| 321 | 
            +
                """Register a new conversation template."""
         | 
| 322 | 
            +
                if not override:
         | 
| 323 | 
            +
                    assert (
         | 
| 324 | 
            +
                        template.name not in conv_templates
         | 
| 325 | 
            +
                    ), f'{template.name} has been registered.'
         | 
| 326 | 
            +
             | 
| 327 | 
            +
                conv_templates[template.name] = template
         | 
| 328 | 
            +
             | 
| 329 | 
            +
             | 
| 330 | 
            +
            def get_conv_template(name: str) -> Conversation:
         | 
| 331 | 
            +
                """Get a conversation template."""
         | 
| 332 | 
            +
                return conv_templates[name].copy()
         | 
| 333 | 
            +
             | 
| 334 | 
            +
             | 
| 335 | 
            +
            # Both Hermes-2 and internlm2-chat are chatml-format conversation templates. The difference
         | 
| 336 | 
            +
            # is that during training, the preprocessing function for the Hermes-2 template doesn't add
         | 
| 337 | 
            +
            # <s> at the beginning of the tokenized sequence, while the internlm2-chat template does.
         | 
| 338 | 
            +
            # Therefore, they are completely equivalent during inference.
         | 
| 339 | 
            +
            register_conv_template(
         | 
| 340 | 
            +
                Conversation(
         | 
| 341 | 
            +
                    name='Hermes-2',
         | 
| 342 | 
            +
                    system_template='<|im_start|>system\n{system_message}',
         | 
| 343 | 
            +
                    # note: The new system prompt was not used here to avoid changes in benchmark performance.
         | 
| 344 | 
            +
                    # system_message='我是书生·万象,英文名是InternVL,是由上海人工智能实验室、清华大学及多家合作单位联合开发的多模态大语言模型。',
         | 
| 345 | 
            +
                    system_message='你是由上海人工智能实验室联合商汤科技开发的书生多模态大模型,英文名叫InternVL, 是一个有用无害的人工智能助手。',
         | 
| 346 | 
            +
                    roles=('<|im_start|>user\n', '<|im_start|>assistant\n'),
         | 
| 347 | 
            +
                    sep_style=SeparatorStyle.MPT,
         | 
| 348 | 
            +
                    sep='<|im_end|>',
         | 
| 349 | 
            +
                    stop_str='<|endoftext|>',
         | 
| 350 | 
            +
                )
         | 
| 351 | 
            +
            )
         | 
| 352 | 
            +
             | 
| 353 | 
            +
             | 
| 354 | 
            +
            register_conv_template(
         | 
| 355 | 
            +
                Conversation(
         | 
| 356 | 
            +
                    name='internlm2-chat',
         | 
| 357 | 
            +
                    system_template='<|im_start|>system\n{system_message}',
         | 
| 358 | 
            +
                    # note: The new system prompt was not used here to avoid changes in benchmark performance.
         | 
| 359 | 
            +
                    # system_message='我是书生·万象,英文名是InternVL,是由上海人工智能实验室、清华大学及多家合作单位联合开发的多模态大语言模型。',
         | 
| 360 | 
            +
                    system_message='你是由上海人工智能实验室联合商汤科技开发的书生多模态大模型,英文名叫InternVL, 是一个有用无害的人工智能助手。',
         | 
| 361 | 
            +
                    roles=('<|im_start|>user\n', '<|im_start|>assistant\n'),
         | 
| 362 | 
            +
                    sep_style=SeparatorStyle.MPT,
         | 
| 363 | 
            +
                    sep='<|im_end|>',
         | 
| 364 | 
            +
                )
         | 
| 365 | 
            +
            )
         | 
| 366 | 
            +
             | 
| 367 | 
            +
             | 
| 368 | 
            +
            register_conv_template(
         | 
| 369 | 
            +
                Conversation(
         | 
| 370 | 
            +
                    name='phi3-chat',
         | 
| 371 | 
            +
                    system_template='<|system|>\n{system_message}',
         | 
| 372 | 
            +
                    # note: The new system prompt was not used here to avoid changes in benchmark performance.
         | 
| 373 | 
            +
                    # system_message='我是书生·万象,英文名是InternVL,是由上海人工智能实验室、清华大学及多家合作单位联合开发的多模态大语言模型。',
         | 
| 374 | 
            +
                    system_message='你是由上海人工智能实验室联合商汤科技开发的书生多模态大模型,英文名叫InternVL, 是一个有用无害的人工智能助手。',
         | 
| 375 | 
            +
                    roles=('<|user|>\n', '<|assistant|>\n'),
         | 
| 376 | 
            +
                    sep_style=SeparatorStyle.MPT,
         | 
| 377 | 
            +
                    sep='<|end|>',
         | 
| 378 | 
            +
                )
         | 
| 379 | 
            +
            )
         | 
| 380 | 
            +
             | 
| 381 | 
            +
             | 
| 382 | 
            +
            register_conv_template(
         | 
| 383 | 
            +
                Conversation(
         | 
| 384 | 
            +
                    name='internvl2_5',
         | 
| 385 | 
            +
                    system_template='<|im_start|>system\n{system_message}',
         | 
| 386 | 
            +
                    system_message='你是书生·万象,英文名是InternVL,是由上海人工智能实验室、清华大学及多家合作单位联合开发的多模态大语言模型。',
         | 
| 387 | 
            +
                    roles=('<|im_start|>user\n', '<|im_start|>assistant\n'),
         | 
| 388 | 
            +
                    sep_style=SeparatorStyle.MPT,
         | 
| 389 | 
            +
                    sep='<|im_end|>\n',
         | 
| 390 | 
            +
                )
         | 
| 391 | 
            +
            )
         | 
    	
        examples/image1.jpg
    ADDED
    
    |   | 
    	
        examples/image2.jpg
    ADDED
    
    |   | 
| Git LFS Details
 | 
    	
        examples/red-panda.mp4
    ADDED
    
    | @@ -0,0 +1,3 @@ | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            version https://git-lfs.github.com/spec/v1
         | 
| 2 | 
            +
            oid sha256:d921c07bb97224d65a37801541d246067f0d506f08723ffa1ad85c217907ccb8
         | 
| 3 | 
            +
            size 1867237
         | 
    	
        generation_config.json
    ADDED
    
    | @@ -0,0 +1,4 @@ | |
|  | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            {
         | 
| 2 | 
            +
              "_from_model_config": true,
         | 
| 3 | 
            +
              "transformers_version": "4.45.1"
         | 
| 4 | 
            +
            }
         | 
    	
        merges.txt
    ADDED
    
    | The diff for this file is too large to render. 
		See raw diff | 
|  | 
    	
        model-00001-of-00004.safetensors
    ADDED
    
    | @@ -0,0 +1,3 @@ | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            version https://git-lfs.github.com/spec/v1
         | 
| 2 | 
            +
            oid sha256:b15810e04fc49489ffaa0f92f9c0c8c79953e498154cc73932a20f959a0c0818
         | 
| 3 | 
            +
            size 4991123960
         | 
    	
        model-00002-of-00004.safetensors
    ADDED
    
    | @@ -0,0 +1,3 @@ | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            version https://git-lfs.github.com/spec/v1
         | 
| 2 | 
            +
            oid sha256:2df3d891d3c4ecc0bb9b52452e6f1f9a81030f3ab0e10be05f0b213770c49560
         | 
| 3 | 
            +
            size 4958443072
         | 
    	
        model-00003-of-00004.safetensors
    ADDED
    
    | @@ -0,0 +1,3 @@ | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            version https://git-lfs.github.com/spec/v1
         | 
| 2 | 
            +
            oid sha256:fe4063e2489bdf7ffbbaed348b6153fee3db386cc5c512e16cf39dfa178e0ce3
         | 
| 3 | 
            +
            size 4796984024
         | 
    	
        model-00004-of-00004.safetensors
    ADDED
    
    | @@ -0,0 +1,3 @@ | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            version https://git-lfs.github.com/spec/v1
         | 
| 2 | 
            +
            oid sha256:bea12057abe0f74be91c3228f386fe25905f27e28e3e472efd7ac8614c5dbe85
         | 
| 3 | 
            +
            size 1142280864
         | 
    	
        model.safetensors.index.json
    ADDED
    
    | @@ -0,0 +1,692 @@ | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            {
         | 
| 2 | 
            +
              "metadata": {
         | 
| 3 | 
            +
                "total_size": 15888747520
         | 
| 4 | 
            +
              },
         | 
| 5 | 
            +
              "weight_map": {
         | 
| 6 | 
            +
                "language_model.lm_head.weight": "model-00004-of-00004.safetensors",
         | 
| 7 | 
            +
                "language_model.model.embed_tokens.weight": "model-00001-of-00004.safetensors",
         | 
| 8 | 
            +
                "language_model.model.layers.0.input_layernorm.weight": "model-00001-of-00004.safetensors",
         | 
| 9 | 
            +
                "language_model.model.layers.0.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
         | 
| 10 | 
            +
                "language_model.model.layers.0.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
         | 
| 11 | 
            +
                "language_model.model.layers.0.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
         | 
| 12 | 
            +
                "language_model.model.layers.0.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
         | 
| 13 | 
            +
                "language_model.model.layers.0.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
         | 
| 14 | 
            +
                "language_model.model.layers.0.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
         | 
| 15 | 
            +
                "language_model.model.layers.0.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
         | 
| 16 | 
            +
                "language_model.model.layers.0.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
         | 
| 17 | 
            +
                "language_model.model.layers.0.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
         | 
| 18 | 
            +
                "language_model.model.layers.0.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
         | 
| 19 | 
            +
                "language_model.model.layers.0.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
         | 
| 20 | 
            +
                "language_model.model.layers.1.input_layernorm.weight": "model-00001-of-00004.safetensors",
         | 
| 21 | 
            +
                "language_model.model.layers.1.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
         | 
| 22 | 
            +
                "language_model.model.layers.1.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
         | 
| 23 | 
            +
                "language_model.model.layers.1.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
         | 
| 24 | 
            +
                "language_model.model.layers.1.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
         | 
| 25 | 
            +
                "language_model.model.layers.1.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
         | 
| 26 | 
            +
                "language_model.model.layers.1.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
         | 
| 27 | 
            +
                "language_model.model.layers.1.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
         | 
| 28 | 
            +
                "language_model.model.layers.1.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
         | 
| 29 | 
            +
                "language_model.model.layers.1.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
         | 
| 30 | 
            +
                "language_model.model.layers.1.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
         | 
| 31 | 
            +
                "language_model.model.layers.1.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
         | 
| 32 | 
            +
                "language_model.model.layers.10.input_layernorm.weight": "model-00002-of-00004.safetensors",
         | 
| 33 | 
            +
                "language_model.model.layers.10.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
         | 
| 34 | 
            +
                "language_model.model.layers.10.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
         | 
| 35 | 
            +
                "language_model.model.layers.10.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
         | 
| 36 | 
            +
                "language_model.model.layers.10.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
         | 
| 37 | 
            +
                "language_model.model.layers.10.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
         | 
| 38 | 
            +
                "language_model.model.layers.10.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
         | 
| 39 | 
            +
                "language_model.model.layers.10.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
         | 
| 40 | 
            +
                "language_model.model.layers.10.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
         | 
| 41 | 
            +
                "language_model.model.layers.10.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
         | 
| 42 | 
            +
                "language_model.model.layers.10.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
         | 
| 43 | 
            +
                "language_model.model.layers.10.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
         | 
| 44 | 
            +
                "language_model.model.layers.11.input_layernorm.weight": "model-00002-of-00004.safetensors",
         | 
| 45 | 
            +
                "language_model.model.layers.11.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
         | 
| 46 | 
            +
                "language_model.model.layers.11.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
         | 
| 47 | 
            +
                "language_model.model.layers.11.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
         | 
| 48 | 
            +
                "language_model.model.layers.11.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
         | 
| 49 | 
            +
                "language_model.model.layers.11.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
         | 
| 50 | 
            +
                "language_model.model.layers.11.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
         | 
| 51 | 
            +
                "language_model.model.layers.11.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
         | 
| 52 | 
            +
                "language_model.model.layers.11.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
         | 
| 53 | 
            +
                "language_model.model.layers.11.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
         | 
| 54 | 
            +
                "language_model.model.layers.11.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
         | 
| 55 | 
            +
                "language_model.model.layers.11.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
         | 
| 56 | 
            +
                "language_model.model.layers.12.input_layernorm.weight": "model-00002-of-00004.safetensors",
         | 
| 57 | 
            +
                "language_model.model.layers.12.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
         | 
| 58 | 
            +
                "language_model.model.layers.12.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
         | 
| 59 | 
            +
                "language_model.model.layers.12.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
         | 
| 60 | 
            +
                "language_model.model.layers.12.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
         | 
| 61 | 
            +
                "language_model.model.layers.12.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
         | 
| 62 | 
            +
                "language_model.model.layers.12.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
         | 
| 63 | 
            +
                "language_model.model.layers.12.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
         | 
| 64 | 
            +
                "language_model.model.layers.12.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
         | 
| 65 | 
            +
                "language_model.model.layers.12.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
         | 
| 66 | 
            +
                "language_model.model.layers.12.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
         | 
| 67 | 
            +
                "language_model.model.layers.12.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
         | 
| 68 | 
            +
                "language_model.model.layers.13.input_layernorm.weight": "model-00002-of-00004.safetensors",
         | 
| 69 | 
            +
                "language_model.model.layers.13.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
         | 
| 70 | 
            +
                "language_model.model.layers.13.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
         | 
| 71 | 
            +
                "language_model.model.layers.13.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
         | 
| 72 | 
            +
                "language_model.model.layers.13.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
         | 
| 73 | 
            +
                "language_model.model.layers.13.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
         | 
| 74 | 
            +
                "language_model.model.layers.13.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
         | 
| 75 | 
            +
                "language_model.model.layers.13.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
         | 
| 76 | 
            +
                "language_model.model.layers.13.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
         | 
| 77 | 
            +
                "language_model.model.layers.13.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
         | 
| 78 | 
            +
                "language_model.model.layers.13.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
         | 
| 79 | 
            +
                "language_model.model.layers.13.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
         | 
| 80 | 
            +
                "language_model.model.layers.14.input_layernorm.weight": "model-00002-of-00004.safetensors",
         | 
| 81 | 
            +
                "language_model.model.layers.14.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
         | 
| 82 | 
            +
                "language_model.model.layers.14.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
         | 
| 83 | 
            +
                "language_model.model.layers.14.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
         | 
| 84 | 
            +
                "language_model.model.layers.14.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
         | 
| 85 | 
            +
                "language_model.model.layers.14.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
         | 
| 86 | 
            +
                "language_model.model.layers.14.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
         | 
| 87 | 
            +
                "language_model.model.layers.14.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
         | 
| 88 | 
            +
                "language_model.model.layers.14.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
         | 
| 89 | 
            +
                "language_model.model.layers.14.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
         | 
| 90 | 
            +
                "language_model.model.layers.14.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
         | 
| 91 | 
            +
                "language_model.model.layers.14.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
         | 
| 92 | 
            +
                "language_model.model.layers.15.input_layernorm.weight": "model-00002-of-00004.safetensors",
         | 
| 93 | 
            +
                "language_model.model.layers.15.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
         | 
| 94 | 
            +
                "language_model.model.layers.15.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
         | 
| 95 | 
            +
                "language_model.model.layers.15.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
         | 
| 96 | 
            +
                "language_model.model.layers.15.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
         | 
| 97 | 
            +
                "language_model.model.layers.15.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
         | 
| 98 | 
            +
                "language_model.model.layers.15.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
         | 
| 99 | 
            +
                "language_model.model.layers.15.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
         | 
| 100 | 
            +
                "language_model.model.layers.15.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
         | 
| 101 | 
            +
                "language_model.model.layers.15.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
         | 
| 102 | 
            +
                "language_model.model.layers.15.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
         | 
| 103 | 
            +
                "language_model.model.layers.15.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
         | 
| 104 | 
            +
                "language_model.model.layers.16.input_layernorm.weight": "model-00002-of-00004.safetensors",
         | 
| 105 | 
            +
                "language_model.model.layers.16.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
         | 
| 106 | 
            +
                "language_model.model.layers.16.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
         | 
| 107 | 
            +
                "language_model.model.layers.16.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
         | 
| 108 | 
            +
                "language_model.model.layers.16.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
         | 
| 109 | 
            +
                "language_model.model.layers.16.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
         | 
| 110 | 
            +
                "language_model.model.layers.16.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
         | 
| 111 | 
            +
                "language_model.model.layers.16.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
         | 
| 112 | 
            +
                "language_model.model.layers.16.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
         | 
| 113 | 
            +
                "language_model.model.layers.16.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
         | 
| 114 | 
            +
                "language_model.model.layers.16.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
         | 
| 115 | 
            +
                "language_model.model.layers.16.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
         | 
| 116 | 
            +
                "language_model.model.layers.17.input_layernorm.weight": "model-00003-of-00004.safetensors",
         | 
| 117 | 
            +
                "language_model.model.layers.17.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
         | 
| 118 | 
            +
                "language_model.model.layers.17.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
         | 
| 119 | 
            +
                "language_model.model.layers.17.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
         | 
| 120 | 
            +
                "language_model.model.layers.17.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
         | 
| 121 | 
            +
                "language_model.model.layers.17.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
         | 
| 122 | 
            +
                "language_model.model.layers.17.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
         | 
| 123 | 
            +
                "language_model.model.layers.17.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
         | 
| 124 | 
            +
                "language_model.model.layers.17.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
         | 
| 125 | 
            +
                "language_model.model.layers.17.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
         | 
| 126 | 
            +
                "language_model.model.layers.17.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
         | 
| 127 | 
            +
                "language_model.model.layers.17.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
         | 
| 128 | 
            +
                "language_model.model.layers.18.input_layernorm.weight": "model-00003-of-00004.safetensors",
         | 
| 129 | 
            +
                "language_model.model.layers.18.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
         | 
| 130 | 
            +
                "language_model.model.layers.18.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
         | 
| 131 | 
            +
                "language_model.model.layers.18.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
         | 
| 132 | 
            +
                "language_model.model.layers.18.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
         | 
| 133 | 
            +
                "language_model.model.layers.18.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
         | 
| 134 | 
            +
                "language_model.model.layers.18.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
         | 
| 135 | 
            +
                "language_model.model.layers.18.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
         | 
| 136 | 
            +
                "language_model.model.layers.18.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
         | 
| 137 | 
            +
                "language_model.model.layers.18.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
         | 
| 138 | 
            +
                "language_model.model.layers.18.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
         | 
| 139 | 
            +
                "language_model.model.layers.18.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
         | 
| 140 | 
            +
                "language_model.model.layers.19.input_layernorm.weight": "model-00003-of-00004.safetensors",
         | 
| 141 | 
            +
                "language_model.model.layers.19.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
         | 
| 142 | 
            +
                "language_model.model.layers.19.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
         | 
| 143 | 
            +
                "language_model.model.layers.19.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
         | 
| 144 | 
            +
                "language_model.model.layers.19.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
         | 
| 145 | 
            +
                "language_model.model.layers.19.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
         | 
| 146 | 
            +
                "language_model.model.layers.19.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
         | 
| 147 | 
            +
                "language_model.model.layers.19.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
         | 
| 148 | 
            +
                "language_model.model.layers.19.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
         | 
| 149 | 
            +
                "language_model.model.layers.19.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
         | 
| 150 | 
            +
                "language_model.model.layers.19.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
         | 
| 151 | 
            +
                "language_model.model.layers.19.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
         | 
| 152 | 
            +
                "language_model.model.layers.2.input_layernorm.weight": "model-00001-of-00004.safetensors",
         | 
| 153 | 
            +
                "language_model.model.layers.2.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
         | 
| 154 | 
            +
                "language_model.model.layers.2.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
         | 
| 155 | 
            +
                "language_model.model.layers.2.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
         | 
| 156 | 
            +
                "language_model.model.layers.2.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
         | 
| 157 | 
            +
                "language_model.model.layers.2.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
         | 
| 158 | 
            +
                "language_model.model.layers.2.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
         | 
| 159 | 
            +
                "language_model.model.layers.2.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
         | 
| 160 | 
            +
                "language_model.model.layers.2.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
         | 
| 161 | 
            +
                "language_model.model.layers.2.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
         | 
| 162 | 
            +
                "language_model.model.layers.2.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
         | 
| 163 | 
            +
                "language_model.model.layers.2.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
         | 
| 164 | 
            +
                "language_model.model.layers.20.input_layernorm.weight": "model-00003-of-00004.safetensors",
         | 
| 165 | 
            +
                "language_model.model.layers.20.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
         | 
| 166 | 
            +
                "language_model.model.layers.20.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
         | 
| 167 | 
            +
                "language_model.model.layers.20.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
         | 
| 168 | 
            +
                "language_model.model.layers.20.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
         | 
| 169 | 
            +
                "language_model.model.layers.20.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
         | 
| 170 | 
            +
                "language_model.model.layers.20.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
         | 
| 171 | 
            +
                "language_model.model.layers.20.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
         | 
| 172 | 
            +
                "language_model.model.layers.20.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
         | 
| 173 | 
            +
                "language_model.model.layers.20.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
         | 
| 174 | 
            +
                "language_model.model.layers.20.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
         | 
| 175 | 
            +
                "language_model.model.layers.20.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
         | 
| 176 | 
            +
                "language_model.model.layers.21.input_layernorm.weight": "model-00003-of-00004.safetensors",
         | 
| 177 | 
            +
                "language_model.model.layers.21.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
         | 
| 178 | 
            +
                "language_model.model.layers.21.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
         | 
| 179 | 
            +
                "language_model.model.layers.21.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
         | 
| 180 | 
            +
                "language_model.model.layers.21.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
         | 
| 181 | 
            +
                "language_model.model.layers.21.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
         | 
| 182 | 
            +
                "language_model.model.layers.21.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
         | 
| 183 | 
            +
                "language_model.model.layers.21.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
         | 
| 184 | 
            +
                "language_model.model.layers.21.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
         | 
| 185 | 
            +
                "language_model.model.layers.21.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
         | 
| 186 | 
            +
                "language_model.model.layers.21.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
         | 
| 187 | 
            +
                "language_model.model.layers.21.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
         | 
| 188 | 
            +
                "language_model.model.layers.22.input_layernorm.weight": "model-00003-of-00004.safetensors",
         | 
| 189 | 
            +
                "language_model.model.layers.22.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
         | 
| 190 | 
            +
                "language_model.model.layers.22.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
         | 
| 191 | 
            +
                "language_model.model.layers.22.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
         | 
| 192 | 
            +
                "language_model.model.layers.22.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
         | 
| 193 | 
            +
                "language_model.model.layers.22.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
         | 
| 194 | 
            +
                "language_model.model.layers.22.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
         | 
| 195 | 
            +
                "language_model.model.layers.22.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
         | 
| 196 | 
            +
                "language_model.model.layers.22.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
         | 
| 197 | 
            +
                "language_model.model.layers.22.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
         | 
| 198 | 
            +
                "language_model.model.layers.22.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
         | 
| 199 | 
            +
                "language_model.model.layers.22.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
         | 
| 200 | 
            +
                "language_model.model.layers.23.input_layernorm.weight": "model-00003-of-00004.safetensors",
         | 
| 201 | 
            +
                "language_model.model.layers.23.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
         | 
| 202 | 
            +
                "language_model.model.layers.23.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
         | 
| 203 | 
            +
                "language_model.model.layers.23.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
         | 
| 204 | 
            +
                "language_model.model.layers.23.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
         | 
| 205 | 
            +
                "language_model.model.layers.23.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
         | 
| 206 | 
            +
                "language_model.model.layers.23.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
         | 
| 207 | 
            +
                "language_model.model.layers.23.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
         | 
| 208 | 
            +
                "language_model.model.layers.23.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
         | 
| 209 | 
            +
                "language_model.model.layers.23.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
         | 
| 210 | 
            +
                "language_model.model.layers.23.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
         | 
| 211 | 
            +
                "language_model.model.layers.23.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
         | 
| 212 | 
            +
                "language_model.model.layers.24.input_layernorm.weight": "model-00003-of-00004.safetensors",
         | 
| 213 | 
            +
                "language_model.model.layers.24.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
         | 
| 214 | 
            +
                "language_model.model.layers.24.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
         | 
| 215 | 
            +
                "language_model.model.layers.24.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
         | 
| 216 | 
            +
                "language_model.model.layers.24.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
         | 
| 217 | 
            +
                "language_model.model.layers.24.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
         | 
| 218 | 
            +
                "language_model.model.layers.24.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
         | 
| 219 | 
            +
                "language_model.model.layers.24.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
         | 
| 220 | 
            +
                "language_model.model.layers.24.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
         | 
| 221 | 
            +
                "language_model.model.layers.24.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
         | 
| 222 | 
            +
                "language_model.model.layers.24.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
         | 
| 223 | 
            +
                "language_model.model.layers.24.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
         | 
| 224 | 
            +
                "language_model.model.layers.25.input_layernorm.weight": "model-00003-of-00004.safetensors",
         | 
| 225 | 
            +
                "language_model.model.layers.25.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
         | 
| 226 | 
            +
                "language_model.model.layers.25.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
         | 
| 227 | 
            +
                "language_model.model.layers.25.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
         | 
| 228 | 
            +
                "language_model.model.layers.25.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
         | 
| 229 | 
            +
                "language_model.model.layers.25.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
         | 
| 230 | 
            +
                "language_model.model.layers.25.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
         | 
| 231 | 
            +
                "language_model.model.layers.25.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
         | 
| 232 | 
            +
                "language_model.model.layers.25.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
         | 
| 233 | 
            +
                "language_model.model.layers.25.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
         | 
| 234 | 
            +
                "language_model.model.layers.25.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
         | 
| 235 | 
            +
                "language_model.model.layers.25.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
         | 
| 236 | 
            +
                "language_model.model.layers.26.input_layernorm.weight": "model-00003-of-00004.safetensors",
         | 
| 237 | 
            +
                "language_model.model.layers.26.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
         | 
| 238 | 
            +
                "language_model.model.layers.26.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
         | 
| 239 | 
            +
                "language_model.model.layers.26.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
         | 
| 240 | 
            +
                "language_model.model.layers.26.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
         | 
| 241 | 
            +
                "language_model.model.layers.26.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
         | 
| 242 | 
            +
                "language_model.model.layers.26.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
         | 
| 243 | 
            +
                "language_model.model.layers.26.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
         | 
| 244 | 
            +
                "language_model.model.layers.26.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
         | 
| 245 | 
            +
                "language_model.model.layers.26.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
         | 
| 246 | 
            +
                "language_model.model.layers.26.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
         | 
| 247 | 
            +
                "language_model.model.layers.26.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
         | 
| 248 | 
            +
                "language_model.model.layers.27.input_layernorm.weight": "model-00003-of-00004.safetensors",
         | 
| 249 | 
            +
                "language_model.model.layers.27.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
         | 
| 250 | 
            +
                "language_model.model.layers.27.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
         | 
| 251 | 
            +
                "language_model.model.layers.27.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
         | 
| 252 | 
            +
                "language_model.model.layers.27.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
         | 
| 253 | 
            +
                "language_model.model.layers.27.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
         | 
| 254 | 
            +
                "language_model.model.layers.27.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
         | 
| 255 | 
            +
                "language_model.model.layers.27.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
         | 
| 256 | 
            +
                "language_model.model.layers.27.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
         | 
| 257 | 
            +
                "language_model.model.layers.27.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
         | 
| 258 | 
            +
                "language_model.model.layers.27.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
         | 
| 259 | 
            +
                "language_model.model.layers.27.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
         | 
| 260 | 
            +
                "language_model.model.layers.3.input_layernorm.weight": "model-00001-of-00004.safetensors",
         | 
| 261 | 
            +
                "language_model.model.layers.3.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
         | 
| 262 | 
            +
                "language_model.model.layers.3.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
         | 
| 263 | 
            +
                "language_model.model.layers.3.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
         | 
| 264 | 
            +
                "language_model.model.layers.3.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
         | 
| 265 | 
            +
                "language_model.model.layers.3.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
         | 
| 266 | 
            +
                "language_model.model.layers.3.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
         | 
| 267 | 
            +
                "language_model.model.layers.3.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
         | 
| 268 | 
            +
                "language_model.model.layers.3.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
         | 
| 269 | 
            +
                "language_model.model.layers.3.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
         | 
| 270 | 
            +
                "language_model.model.layers.3.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
         | 
| 271 | 
            +
                "language_model.model.layers.3.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
         | 
| 272 | 
            +
                "language_model.model.layers.4.input_layernorm.weight": "model-00001-of-00004.safetensors",
         | 
| 273 | 
            +
                "language_model.model.layers.4.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
         | 
| 274 | 
            +
                "language_model.model.layers.4.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
         | 
| 275 | 
            +
                "language_model.model.layers.4.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
         | 
| 276 | 
            +
                "language_model.model.layers.4.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
         | 
| 277 | 
            +
                "language_model.model.layers.4.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
         | 
| 278 | 
            +
                "language_model.model.layers.4.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
         | 
| 279 | 
            +
                "language_model.model.layers.4.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
         | 
| 280 | 
            +
                "language_model.model.layers.4.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
         | 
| 281 | 
            +
                "language_model.model.layers.4.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
         | 
| 282 | 
            +
                "language_model.model.layers.4.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
         | 
| 283 | 
            +
                "language_model.model.layers.4.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
         | 
| 284 | 
            +
                "language_model.model.layers.5.input_layernorm.weight": "model-00001-of-00004.safetensors",
         | 
| 285 | 
            +
                "language_model.model.layers.5.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
         | 
| 286 | 
            +
                "language_model.model.layers.5.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
         | 
| 287 | 
            +
                "language_model.model.layers.5.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
         | 
| 288 | 
            +
                "language_model.model.layers.5.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
         | 
| 289 | 
            +
                "language_model.model.layers.5.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
         | 
| 290 | 
            +
                "language_model.model.layers.5.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
         | 
| 291 | 
            +
                "language_model.model.layers.5.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
         | 
| 292 | 
            +
                "language_model.model.layers.5.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
         | 
| 293 | 
            +
                "language_model.model.layers.5.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
         | 
| 294 | 
            +
                "language_model.model.layers.5.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
         | 
| 295 | 
            +
                "language_model.model.layers.5.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
         | 
| 296 | 
            +
                "language_model.model.layers.6.input_layernorm.weight": "model-00001-of-00004.safetensors",
         | 
| 297 | 
            +
                "language_model.model.layers.6.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
         | 
| 298 | 
            +
                "language_model.model.layers.6.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
         | 
| 299 | 
            +
                "language_model.model.layers.6.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
         | 
| 300 | 
            +
                "language_model.model.layers.6.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
         | 
| 301 | 
            +
                "language_model.model.layers.6.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
         | 
| 302 | 
            +
                "language_model.model.layers.6.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
         | 
| 303 | 
            +
                "language_model.model.layers.6.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
         | 
| 304 | 
            +
                "language_model.model.layers.6.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
         | 
| 305 | 
            +
                "language_model.model.layers.6.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
         | 
| 306 | 
            +
                "language_model.model.layers.6.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
         | 
| 307 | 
            +
                "language_model.model.layers.6.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
         | 
| 308 | 
            +
                "language_model.model.layers.7.input_layernorm.weight": "model-00002-of-00004.safetensors",
         | 
| 309 | 
            +
                "language_model.model.layers.7.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
         | 
| 310 | 
            +
                "language_model.model.layers.7.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
         | 
| 311 | 
            +
                "language_model.model.layers.7.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
         | 
| 312 | 
            +
                "language_model.model.layers.7.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
         | 
| 313 | 
            +
                "language_model.model.layers.7.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
         | 
| 314 | 
            +
                "language_model.model.layers.7.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
         | 
| 315 | 
            +
                "language_model.model.layers.7.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
         | 
| 316 | 
            +
                "language_model.model.layers.7.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
         | 
| 317 | 
            +
                "language_model.model.layers.7.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
         | 
| 318 | 
            +
                "language_model.model.layers.7.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
         | 
| 319 | 
            +
                "language_model.model.layers.7.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
         | 
| 320 | 
            +
                "language_model.model.layers.8.input_layernorm.weight": "model-00002-of-00004.safetensors",
         | 
| 321 | 
            +
                "language_model.model.layers.8.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
         | 
| 322 | 
            +
                "language_model.model.layers.8.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
         | 
| 323 | 
            +
                "language_model.model.layers.8.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
         | 
| 324 | 
            +
                "language_model.model.layers.8.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
         | 
| 325 | 
            +
                "language_model.model.layers.8.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
         | 
| 326 | 
            +
                "language_model.model.layers.8.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
         | 
| 327 | 
            +
                "language_model.model.layers.8.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
         | 
| 328 | 
            +
                "language_model.model.layers.8.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
         | 
| 329 | 
            +
                "language_model.model.layers.8.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
         | 
| 330 | 
            +
                "language_model.model.layers.8.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
         | 
| 331 | 
            +
                "language_model.model.layers.8.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
         | 
| 332 | 
            +
                "language_model.model.layers.9.input_layernorm.weight": "model-00002-of-00004.safetensors",
         | 
| 333 | 
            +
                "language_model.model.layers.9.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
         | 
| 334 | 
            +
                "language_model.model.layers.9.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
         | 
| 335 | 
            +
                "language_model.model.layers.9.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
         | 
| 336 | 
            +
                "language_model.model.layers.9.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
         | 
| 337 | 
            +
                "language_model.model.layers.9.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
         | 
| 338 | 
            +
                "language_model.model.layers.9.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
         | 
| 339 | 
            +
                "language_model.model.layers.9.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
         | 
| 340 | 
            +
                "language_model.model.layers.9.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
         | 
| 341 | 
            +
                "language_model.model.layers.9.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
         | 
| 342 | 
            +
                "language_model.model.layers.9.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
         | 
| 343 | 
            +
                "language_model.model.layers.9.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
         | 
| 344 | 
            +
                "language_model.model.norm.weight": "model-00003-of-00004.safetensors",
         | 
| 345 | 
            +
                "mlp1.0.bias": "model-00004-of-00004.safetensors",
         | 
| 346 | 
            +
                "mlp1.0.weight": "model-00004-of-00004.safetensors",
         | 
| 347 | 
            +
                "mlp1.1.bias": "model-00004-of-00004.safetensors",
         | 
| 348 | 
            +
                "mlp1.1.weight": "model-00004-of-00004.safetensors",
         | 
| 349 | 
            +
                "mlp1.3.bias": "model-00004-of-00004.safetensors",
         | 
| 350 | 
            +
                "mlp1.3.weight": "model-00004-of-00004.safetensors",
         | 
| 351 | 
            +
                "vision_model.embeddings.class_embedding": "model-00001-of-00004.safetensors",
         | 
| 352 | 
            +
                "vision_model.embeddings.patch_embedding.bias": "model-00001-of-00004.safetensors",
         | 
| 353 | 
            +
                "vision_model.embeddings.patch_embedding.weight": "model-00001-of-00004.safetensors",
         | 
| 354 | 
            +
                "vision_model.embeddings.position_embedding": "model-00001-of-00004.safetensors",
         | 
| 355 | 
            +
                "vision_model.encoder.layers.0.attn.proj.bias": "model-00001-of-00004.safetensors",
         | 
| 356 | 
            +
                "vision_model.encoder.layers.0.attn.proj.weight": "model-00001-of-00004.safetensors",
         | 
| 357 | 
            +
                "vision_model.encoder.layers.0.attn.qkv.bias": "model-00001-of-00004.safetensors",
         | 
| 358 | 
            +
                "vision_model.encoder.layers.0.attn.qkv.weight": "model-00001-of-00004.safetensors",
         | 
| 359 | 
            +
                "vision_model.encoder.layers.0.ls1": "model-00001-of-00004.safetensors",
         | 
| 360 | 
            +
                "vision_model.encoder.layers.0.ls2": "model-00001-of-00004.safetensors",
         | 
| 361 | 
            +
                "vision_model.encoder.layers.0.mlp.fc1.bias": "model-00001-of-00004.safetensors",
         | 
| 362 | 
            +
                "vision_model.encoder.layers.0.mlp.fc1.weight": "model-00001-of-00004.safetensors",
         | 
| 363 | 
            +
                "vision_model.encoder.layers.0.mlp.fc2.bias": "model-00001-of-00004.safetensors",
         | 
| 364 | 
            +
                "vision_model.encoder.layers.0.mlp.fc2.weight": "model-00001-of-00004.safetensors",
         | 
| 365 | 
            +
                "vision_model.encoder.layers.0.norm1.bias": "model-00001-of-00004.safetensors",
         | 
| 366 | 
            +
                "vision_model.encoder.layers.0.norm1.weight": "model-00001-of-00004.safetensors",
         | 
| 367 | 
            +
                "vision_model.encoder.layers.0.norm2.bias": "model-00001-of-00004.safetensors",
         | 
| 368 | 
            +
                "vision_model.encoder.layers.0.norm2.weight": "model-00001-of-00004.safetensors",
         | 
| 369 | 
            +
                "vision_model.encoder.layers.1.attn.proj.bias": "model-00001-of-00004.safetensors",
         | 
| 370 | 
            +
                "vision_model.encoder.layers.1.attn.proj.weight": "model-00001-of-00004.safetensors",
         | 
| 371 | 
            +
                "vision_model.encoder.layers.1.attn.qkv.bias": "model-00001-of-00004.safetensors",
         | 
| 372 | 
            +
                "vision_model.encoder.layers.1.attn.qkv.weight": "model-00001-of-00004.safetensors",
         | 
| 373 | 
            +
                "vision_model.encoder.layers.1.ls1": "model-00001-of-00004.safetensors",
         | 
| 374 | 
            +
                "vision_model.encoder.layers.1.ls2": "model-00001-of-00004.safetensors",
         | 
| 375 | 
            +
                "vision_model.encoder.layers.1.mlp.fc1.bias": "model-00001-of-00004.safetensors",
         | 
| 376 | 
            +
                "vision_model.encoder.layers.1.mlp.fc1.weight": "model-00001-of-00004.safetensors",
         | 
| 377 | 
            +
                "vision_model.encoder.layers.1.mlp.fc2.bias": "model-00001-of-00004.safetensors",
         | 
| 378 | 
            +
                "vision_model.encoder.layers.1.mlp.fc2.weight": "model-00001-of-00004.safetensors",
         | 
| 379 | 
            +
                "vision_model.encoder.layers.1.norm1.bias": "model-00001-of-00004.safetensors",
         | 
| 380 | 
            +
                "vision_model.encoder.layers.1.norm1.weight": "model-00001-of-00004.safetensors",
         | 
| 381 | 
            +
                "vision_model.encoder.layers.1.norm2.bias": "model-00001-of-00004.safetensors",
         | 
| 382 | 
            +
                "vision_model.encoder.layers.1.norm2.weight": "model-00001-of-00004.safetensors",
         | 
| 383 | 
            +
                "vision_model.encoder.layers.10.attn.proj.bias": "model-00001-of-00004.safetensors",
         | 
| 384 | 
            +
                "vision_model.encoder.layers.10.attn.proj.weight": "model-00001-of-00004.safetensors",
         | 
| 385 | 
            +
                "vision_model.encoder.layers.10.attn.qkv.bias": "model-00001-of-00004.safetensors",
         | 
| 386 | 
            +
                "vision_model.encoder.layers.10.attn.qkv.weight": "model-00001-of-00004.safetensors",
         | 
| 387 | 
            +
                "vision_model.encoder.layers.10.ls1": "model-00001-of-00004.safetensors",
         | 
| 388 | 
            +
                "vision_model.encoder.layers.10.ls2": "model-00001-of-00004.safetensors",
         | 
| 389 | 
            +
                "vision_model.encoder.layers.10.mlp.fc1.bias": "model-00001-of-00004.safetensors",
         | 
| 390 | 
            +
                "vision_model.encoder.layers.10.mlp.fc1.weight": "model-00001-of-00004.safetensors",
         | 
| 391 | 
            +
                "vision_model.encoder.layers.10.mlp.fc2.bias": "model-00001-of-00004.safetensors",
         | 
| 392 | 
            +
                "vision_model.encoder.layers.10.mlp.fc2.weight": "model-00001-of-00004.safetensors",
         | 
| 393 | 
            +
                "vision_model.encoder.layers.10.norm1.bias": "model-00001-of-00004.safetensors",
         | 
| 394 | 
            +
                "vision_model.encoder.layers.10.norm1.weight": "model-00001-of-00004.safetensors",
         | 
| 395 | 
            +
                "vision_model.encoder.layers.10.norm2.bias": "model-00001-of-00004.safetensors",
         | 
| 396 | 
            +
                "vision_model.encoder.layers.10.norm2.weight": "model-00001-of-00004.safetensors",
         | 
| 397 | 
            +
                "vision_model.encoder.layers.11.attn.proj.bias": "model-00001-of-00004.safetensors",
         | 
| 398 | 
            +
                "vision_model.encoder.layers.11.attn.proj.weight": "model-00001-of-00004.safetensors",
         | 
| 399 | 
            +
                "vision_model.encoder.layers.11.attn.qkv.bias": "model-00001-of-00004.safetensors",
         | 
| 400 | 
            +
                "vision_model.encoder.layers.11.attn.qkv.weight": "model-00001-of-00004.safetensors",
         | 
| 401 | 
            +
                "vision_model.encoder.layers.11.ls1": "model-00001-of-00004.safetensors",
         | 
| 402 | 
            +
                "vision_model.encoder.layers.11.ls2": "model-00001-of-00004.safetensors",
         | 
| 403 | 
            +
                "vision_model.encoder.layers.11.mlp.fc1.bias": "model-00001-of-00004.safetensors",
         | 
| 404 | 
            +
                "vision_model.encoder.layers.11.mlp.fc1.weight": "model-00001-of-00004.safetensors",
         | 
| 405 | 
            +
                "vision_model.encoder.layers.11.mlp.fc2.bias": "model-00001-of-00004.safetensors",
         | 
| 406 | 
            +
                "vision_model.encoder.layers.11.mlp.fc2.weight": "model-00001-of-00004.safetensors",
         | 
| 407 | 
            +
                "vision_model.encoder.layers.11.norm1.bias": "model-00001-of-00004.safetensors",
         | 
| 408 | 
            +
                "vision_model.encoder.layers.11.norm1.weight": "model-00001-of-00004.safetensors",
         | 
| 409 | 
            +
                "vision_model.encoder.layers.11.norm2.bias": "model-00001-of-00004.safetensors",
         | 
| 410 | 
            +
                "vision_model.encoder.layers.11.norm2.weight": "model-00001-of-00004.safetensors",
         | 
| 411 | 
            +
                "vision_model.encoder.layers.12.attn.proj.bias": "model-00001-of-00004.safetensors",
         | 
| 412 | 
            +
                "vision_model.encoder.layers.12.attn.proj.weight": "model-00001-of-00004.safetensors",
         | 
| 413 | 
            +
                "vision_model.encoder.layers.12.attn.qkv.bias": "model-00001-of-00004.safetensors",
         | 
| 414 | 
            +
                "vision_model.encoder.layers.12.attn.qkv.weight": "model-00001-of-00004.safetensors",
         | 
| 415 | 
            +
                "vision_model.encoder.layers.12.ls1": "model-00001-of-00004.safetensors",
         | 
| 416 | 
            +
                "vision_model.encoder.layers.12.ls2": "model-00001-of-00004.safetensors",
         | 
| 417 | 
            +
                "vision_model.encoder.layers.12.mlp.fc1.bias": "model-00001-of-00004.safetensors",
         | 
| 418 | 
            +
                "vision_model.encoder.layers.12.mlp.fc1.weight": "model-00001-of-00004.safetensors",
         | 
| 419 | 
            +
                "vision_model.encoder.layers.12.mlp.fc2.bias": "model-00001-of-00004.safetensors",
         | 
| 420 | 
            +
                "vision_model.encoder.layers.12.mlp.fc2.weight": "model-00001-of-00004.safetensors",
         | 
| 421 | 
            +
                "vision_model.encoder.layers.12.norm1.bias": "model-00001-of-00004.safetensors",
         | 
| 422 | 
            +
                "vision_model.encoder.layers.12.norm1.weight": "model-00001-of-00004.safetensors",
         | 
| 423 | 
            +
                "vision_model.encoder.layers.12.norm2.bias": "model-00001-of-00004.safetensors",
         | 
| 424 | 
            +
                "vision_model.encoder.layers.12.norm2.weight": "model-00001-of-00004.safetensors",
         | 
| 425 | 
            +
                "vision_model.encoder.layers.13.attn.proj.bias": "model-00001-of-00004.safetensors",
         | 
| 426 | 
            +
                "vision_model.encoder.layers.13.attn.proj.weight": "model-00001-of-00004.safetensors",
         | 
| 427 | 
            +
                "vision_model.encoder.layers.13.attn.qkv.bias": "model-00001-of-00004.safetensors",
         | 
| 428 | 
            +
                "vision_model.encoder.layers.13.attn.qkv.weight": "model-00001-of-00004.safetensors",
         | 
| 429 | 
            +
                "vision_model.encoder.layers.13.ls1": "model-00001-of-00004.safetensors",
         | 
| 430 | 
            +
                "vision_model.encoder.layers.13.ls2": "model-00001-of-00004.safetensors",
         | 
| 431 | 
            +
                "vision_model.encoder.layers.13.mlp.fc1.bias": "model-00001-of-00004.safetensors",
         | 
| 432 | 
            +
                "vision_model.encoder.layers.13.mlp.fc1.weight": "model-00001-of-00004.safetensors",
         | 
| 433 | 
            +
                "vision_model.encoder.layers.13.mlp.fc2.bias": "model-00001-of-00004.safetensors",
         | 
| 434 | 
            +
                "vision_model.encoder.layers.13.mlp.fc2.weight": "model-00001-of-00004.safetensors",
         | 
| 435 | 
            +
                "vision_model.encoder.layers.13.norm1.bias": "model-00001-of-00004.safetensors",
         | 
| 436 | 
            +
                "vision_model.encoder.layers.13.norm1.weight": "model-00001-of-00004.safetensors",
         | 
| 437 | 
            +
                "vision_model.encoder.layers.13.norm2.bias": "model-00001-of-00004.safetensors",
         | 
| 438 | 
            +
                "vision_model.encoder.layers.13.norm2.weight": "model-00001-of-00004.safetensors",
         | 
| 439 | 
            +
                "vision_model.encoder.layers.14.attn.proj.bias": "model-00001-of-00004.safetensors",
         | 
| 440 | 
            +
                "vision_model.encoder.layers.14.attn.proj.weight": "model-00001-of-00004.safetensors",
         | 
| 441 | 
            +
                "vision_model.encoder.layers.14.attn.qkv.bias": "model-00001-of-00004.safetensors",
         | 
| 442 | 
            +
                "vision_model.encoder.layers.14.attn.qkv.weight": "model-00001-of-00004.safetensors",
         | 
| 443 | 
            +
                "vision_model.encoder.layers.14.ls1": "model-00001-of-00004.safetensors",
         | 
| 444 | 
            +
                "vision_model.encoder.layers.14.ls2": "model-00001-of-00004.safetensors",
         | 
| 445 | 
            +
                "vision_model.encoder.layers.14.mlp.fc1.bias": "model-00001-of-00004.safetensors",
         | 
| 446 | 
            +
                "vision_model.encoder.layers.14.mlp.fc1.weight": "model-00001-of-00004.safetensors",
         | 
| 447 | 
            +
                "vision_model.encoder.layers.14.mlp.fc2.bias": "model-00001-of-00004.safetensors",
         | 
| 448 | 
            +
                "vision_model.encoder.layers.14.mlp.fc2.weight": "model-00001-of-00004.safetensors",
         | 
| 449 | 
            +
                "vision_model.encoder.layers.14.norm1.bias": "model-00001-of-00004.safetensors",
         | 
| 450 | 
            +
                "vision_model.encoder.layers.14.norm1.weight": "model-00001-of-00004.safetensors",
         | 
| 451 | 
            +
                "vision_model.encoder.layers.14.norm2.bias": "model-00001-of-00004.safetensors",
         | 
| 452 | 
            +
                "vision_model.encoder.layers.14.norm2.weight": "model-00001-of-00004.safetensors",
         | 
| 453 | 
            +
                "vision_model.encoder.layers.15.attn.proj.bias": "model-00001-of-00004.safetensors",
         | 
| 454 | 
            +
                "vision_model.encoder.layers.15.attn.proj.weight": "model-00001-of-00004.safetensors",
         | 
| 455 | 
            +
                "vision_model.encoder.layers.15.attn.qkv.bias": "model-00001-of-00004.safetensors",
         | 
| 456 | 
            +
                "vision_model.encoder.layers.15.attn.qkv.weight": "model-00001-of-00004.safetensors",
         | 
| 457 | 
            +
                "vision_model.encoder.layers.15.ls1": "model-00001-of-00004.safetensors",
         | 
| 458 | 
            +
                "vision_model.encoder.layers.15.ls2": "model-00001-of-00004.safetensors",
         | 
| 459 | 
            +
                "vision_model.encoder.layers.15.mlp.fc1.bias": "model-00001-of-00004.safetensors",
         | 
| 460 | 
            +
                "vision_model.encoder.layers.15.mlp.fc1.weight": "model-00001-of-00004.safetensors",
         | 
| 461 | 
            +
                "vision_model.encoder.layers.15.mlp.fc2.bias": "model-00001-of-00004.safetensors",
         | 
| 462 | 
            +
                "vision_model.encoder.layers.15.mlp.fc2.weight": "model-00001-of-00004.safetensors",
         | 
| 463 | 
            +
                "vision_model.encoder.layers.15.norm1.bias": "model-00001-of-00004.safetensors",
         | 
| 464 | 
            +
                "vision_model.encoder.layers.15.norm1.weight": "model-00001-of-00004.safetensors",
         | 
| 465 | 
            +
                "vision_model.encoder.layers.15.norm2.bias": "model-00001-of-00004.safetensors",
         | 
| 466 | 
            +
                "vision_model.encoder.layers.15.norm2.weight": "model-00001-of-00004.safetensors",
         | 
| 467 | 
            +
                "vision_model.encoder.layers.16.attn.proj.bias": "model-00001-of-00004.safetensors",
         | 
| 468 | 
            +
                "vision_model.encoder.layers.16.attn.proj.weight": "model-00001-of-00004.safetensors",
         | 
| 469 | 
            +
                "vision_model.encoder.layers.16.attn.qkv.bias": "model-00001-of-00004.safetensors",
         | 
| 470 | 
            +
                "vision_model.encoder.layers.16.attn.qkv.weight": "model-00001-of-00004.safetensors",
         | 
| 471 | 
            +
                "vision_model.encoder.layers.16.ls1": "model-00001-of-00004.safetensors",
         | 
| 472 | 
            +
                "vision_model.encoder.layers.16.ls2": "model-00001-of-00004.safetensors",
         | 
| 473 | 
            +
                "vision_model.encoder.layers.16.mlp.fc1.bias": "model-00001-of-00004.safetensors",
         | 
| 474 | 
            +
                "vision_model.encoder.layers.16.mlp.fc1.weight": "model-00001-of-00004.safetensors",
         | 
| 475 | 
            +
                "vision_model.encoder.layers.16.mlp.fc2.bias": "model-00001-of-00004.safetensors",
         | 
| 476 | 
            +
                "vision_model.encoder.layers.16.mlp.fc2.weight": "model-00001-of-00004.safetensors",
         | 
| 477 | 
            +
                "vision_model.encoder.layers.16.norm1.bias": "model-00001-of-00004.safetensors",
         | 
| 478 | 
            +
                "vision_model.encoder.layers.16.norm1.weight": "model-00001-of-00004.safetensors",
         | 
| 479 | 
            +
                "vision_model.encoder.layers.16.norm2.bias": "model-00001-of-00004.safetensors",
         | 
| 480 | 
            +
                "vision_model.encoder.layers.16.norm2.weight": "model-00001-of-00004.safetensors",
         | 
| 481 | 
            +
                "vision_model.encoder.layers.17.attn.proj.bias": "model-00001-of-00004.safetensors",
         | 
| 482 | 
            +
                "vision_model.encoder.layers.17.attn.proj.weight": "model-00001-of-00004.safetensors",
         | 
| 483 | 
            +
                "vision_model.encoder.layers.17.attn.qkv.bias": "model-00001-of-00004.safetensors",
         | 
| 484 | 
            +
                "vision_model.encoder.layers.17.attn.qkv.weight": "model-00001-of-00004.safetensors",
         | 
| 485 | 
            +
                "vision_model.encoder.layers.17.ls1": "model-00001-of-00004.safetensors",
         | 
| 486 | 
            +
                "vision_model.encoder.layers.17.ls2": "model-00001-of-00004.safetensors",
         | 
| 487 | 
            +
                "vision_model.encoder.layers.17.mlp.fc1.bias": "model-00001-of-00004.safetensors",
         | 
| 488 | 
            +
                "vision_model.encoder.layers.17.mlp.fc1.weight": "model-00001-of-00004.safetensors",
         | 
| 489 | 
            +
                "vision_model.encoder.layers.17.mlp.fc2.bias": "model-00001-of-00004.safetensors",
         | 
| 490 | 
            +
                "vision_model.encoder.layers.17.mlp.fc2.weight": "model-00001-of-00004.safetensors",
         | 
| 491 | 
            +
                "vision_model.encoder.layers.17.norm1.bias": "model-00001-of-00004.safetensors",
         | 
| 492 | 
            +
                "vision_model.encoder.layers.17.norm1.weight": "model-00001-of-00004.safetensors",
         | 
| 493 | 
            +
                "vision_model.encoder.layers.17.norm2.bias": "model-00001-of-00004.safetensors",
         | 
| 494 | 
            +
                "vision_model.encoder.layers.17.norm2.weight": "model-00001-of-00004.safetensors",
         | 
| 495 | 
            +
                "vision_model.encoder.layers.18.attn.proj.bias": "model-00001-of-00004.safetensors",
         | 
| 496 | 
            +
                "vision_model.encoder.layers.18.attn.proj.weight": "model-00001-of-00004.safetensors",
         | 
| 497 | 
            +
                "vision_model.encoder.layers.18.attn.qkv.bias": "model-00001-of-00004.safetensors",
         | 
| 498 | 
            +
                "vision_model.encoder.layers.18.attn.qkv.weight": "model-00001-of-00004.safetensors",
         | 
| 499 | 
            +
                "vision_model.encoder.layers.18.ls1": "model-00001-of-00004.safetensors",
         | 
| 500 | 
            +
                "vision_model.encoder.layers.18.ls2": "model-00001-of-00004.safetensors",
         | 
| 501 | 
            +
                "vision_model.encoder.layers.18.mlp.fc1.bias": "model-00001-of-00004.safetensors",
         | 
| 502 | 
            +
                "vision_model.encoder.layers.18.mlp.fc1.weight": "model-00001-of-00004.safetensors",
         | 
| 503 | 
            +
                "vision_model.encoder.layers.18.mlp.fc2.bias": "model-00001-of-00004.safetensors",
         | 
| 504 | 
            +
                "vision_model.encoder.layers.18.mlp.fc2.weight": "model-00001-of-00004.safetensors",
         | 
| 505 | 
            +
                "vision_model.encoder.layers.18.norm1.bias": "model-00001-of-00004.safetensors",
         | 
| 506 | 
            +
                "vision_model.encoder.layers.18.norm1.weight": "model-00001-of-00004.safetensors",
         | 
| 507 | 
            +
                "vision_model.encoder.layers.18.norm2.bias": "model-00001-of-00004.safetensors",
         | 
| 508 | 
            +
                "vision_model.encoder.layers.18.norm2.weight": "model-00001-of-00004.safetensors",
         | 
| 509 | 
            +
                "vision_model.encoder.layers.19.attn.proj.bias": "model-00001-of-00004.safetensors",
         | 
| 510 | 
            +
                "vision_model.encoder.layers.19.attn.proj.weight": "model-00001-of-00004.safetensors",
         | 
| 511 | 
            +
                "vision_model.encoder.layers.19.attn.qkv.bias": "model-00001-of-00004.safetensors",
         | 
| 512 | 
            +
                "vision_model.encoder.layers.19.attn.qkv.weight": "model-00001-of-00004.safetensors",
         | 
| 513 | 
            +
                "vision_model.encoder.layers.19.ls1": "model-00001-of-00004.safetensors",
         | 
| 514 | 
            +
                "vision_model.encoder.layers.19.ls2": "model-00001-of-00004.safetensors",
         | 
| 515 | 
            +
                "vision_model.encoder.layers.19.mlp.fc1.bias": "model-00001-of-00004.safetensors",
         | 
| 516 | 
            +
                "vision_model.encoder.layers.19.mlp.fc1.weight": "model-00001-of-00004.safetensors",
         | 
| 517 | 
            +
                "vision_model.encoder.layers.19.mlp.fc2.bias": "model-00001-of-00004.safetensors",
         | 
| 518 | 
            +
                "vision_model.encoder.layers.19.mlp.fc2.weight": "model-00001-of-00004.safetensors",
         | 
| 519 | 
            +
                "vision_model.encoder.layers.19.norm1.bias": "model-00001-of-00004.safetensors",
         | 
| 520 | 
            +
                "vision_model.encoder.layers.19.norm1.weight": "model-00001-of-00004.safetensors",
         | 
| 521 | 
            +
                "vision_model.encoder.layers.19.norm2.bias": "model-00001-of-00004.safetensors",
         | 
| 522 | 
            +
                "vision_model.encoder.layers.19.norm2.weight": "model-00001-of-00004.safetensors",
         | 
| 523 | 
            +
                "vision_model.encoder.layers.2.attn.proj.bias": "model-00001-of-00004.safetensors",
         | 
| 524 | 
            +
                "vision_model.encoder.layers.2.attn.proj.weight": "model-00001-of-00004.safetensors",
         | 
| 525 | 
            +
                "vision_model.encoder.layers.2.attn.qkv.bias": "model-00001-of-00004.safetensors",
         | 
| 526 | 
            +
                "vision_model.encoder.layers.2.attn.qkv.weight": "model-00001-of-00004.safetensors",
         | 
| 527 | 
            +
                "vision_model.encoder.layers.2.ls1": "model-00001-of-00004.safetensors",
         | 
| 528 | 
            +
                "vision_model.encoder.layers.2.ls2": "model-00001-of-00004.safetensors",
         | 
| 529 | 
            +
                "vision_model.encoder.layers.2.mlp.fc1.bias": "model-00001-of-00004.safetensors",
         | 
| 530 | 
            +
                "vision_model.encoder.layers.2.mlp.fc1.weight": "model-00001-of-00004.safetensors",
         | 
| 531 | 
            +
                "vision_model.encoder.layers.2.mlp.fc2.bias": "model-00001-of-00004.safetensors",
         | 
| 532 | 
            +
                "vision_model.encoder.layers.2.mlp.fc2.weight": "model-00001-of-00004.safetensors",
         | 
| 533 | 
            +
                "vision_model.encoder.layers.2.norm1.bias": "model-00001-of-00004.safetensors",
         | 
| 534 | 
            +
                "vision_model.encoder.layers.2.norm1.weight": "model-00001-of-00004.safetensors",
         | 
| 535 | 
            +
                "vision_model.encoder.layers.2.norm2.bias": "model-00001-of-00004.safetensors",
         | 
| 536 | 
            +
                "vision_model.encoder.layers.2.norm2.weight": "model-00001-of-00004.safetensors",
         | 
| 537 | 
            +
                "vision_model.encoder.layers.20.attn.proj.bias": "model-00001-of-00004.safetensors",
         | 
| 538 | 
            +
                "vision_model.encoder.layers.20.attn.proj.weight": "model-00001-of-00004.safetensors",
         | 
| 539 | 
            +
                "vision_model.encoder.layers.20.attn.qkv.bias": "model-00001-of-00004.safetensors",
         | 
| 540 | 
            +
                "vision_model.encoder.layers.20.attn.qkv.weight": "model-00001-of-00004.safetensors",
         | 
| 541 | 
            +
                "vision_model.encoder.layers.20.ls1": "model-00001-of-00004.safetensors",
         | 
| 542 | 
            +
                "vision_model.encoder.layers.20.ls2": "model-00001-of-00004.safetensors",
         | 
| 543 | 
            +
                "vision_model.encoder.layers.20.mlp.fc1.bias": "model-00001-of-00004.safetensors",
         | 
| 544 | 
            +
                "vision_model.encoder.layers.20.mlp.fc1.weight": "model-00001-of-00004.safetensors",
         | 
| 545 | 
            +
                "vision_model.encoder.layers.20.mlp.fc2.bias": "model-00001-of-00004.safetensors",
         | 
| 546 | 
            +
                "vision_model.encoder.layers.20.mlp.fc2.weight": "model-00001-of-00004.safetensors",
         | 
| 547 | 
            +
                "vision_model.encoder.layers.20.norm1.bias": "model-00001-of-00004.safetensors",
         | 
| 548 | 
            +
                "vision_model.encoder.layers.20.norm1.weight": "model-00001-of-00004.safetensors",
         | 
| 549 | 
            +
                "vision_model.encoder.layers.20.norm2.bias": "model-00001-of-00004.safetensors",
         | 
| 550 | 
            +
                "vision_model.encoder.layers.20.norm2.weight": "model-00001-of-00004.safetensors",
         | 
| 551 | 
            +
                "vision_model.encoder.layers.21.attn.proj.bias": "model-00001-of-00004.safetensors",
         | 
| 552 | 
            +
                "vision_model.encoder.layers.21.attn.proj.weight": "model-00001-of-00004.safetensors",
         | 
| 553 | 
            +
                "vision_model.encoder.layers.21.attn.qkv.bias": "model-00001-of-00004.safetensors",
         | 
| 554 | 
            +
                "vision_model.encoder.layers.21.attn.qkv.weight": "model-00001-of-00004.safetensors",
         | 
| 555 | 
            +
                "vision_model.encoder.layers.21.ls1": "model-00001-of-00004.safetensors",
         | 
| 556 | 
            +
                "vision_model.encoder.layers.21.ls2": "model-00001-of-00004.safetensors",
         | 
| 557 | 
            +
                "vision_model.encoder.layers.21.mlp.fc1.bias": "model-00001-of-00004.safetensors",
         | 
| 558 | 
            +
                "vision_model.encoder.layers.21.mlp.fc1.weight": "model-00001-of-00004.safetensors",
         | 
| 559 | 
            +
                "vision_model.encoder.layers.21.mlp.fc2.bias": "model-00001-of-00004.safetensors",
         | 
| 560 | 
            +
                "vision_model.encoder.layers.21.mlp.fc2.weight": "model-00001-of-00004.safetensors",
         | 
| 561 | 
            +
                "vision_model.encoder.layers.21.norm1.bias": "model-00001-of-00004.safetensors",
         | 
| 562 | 
            +
                "vision_model.encoder.layers.21.norm1.weight": "model-00001-of-00004.safetensors",
         | 
| 563 | 
            +
                "vision_model.encoder.layers.21.norm2.bias": "model-00001-of-00004.safetensors",
         | 
| 564 | 
            +
                "vision_model.encoder.layers.21.norm2.weight": "model-00001-of-00004.safetensors",
         | 
| 565 | 
            +
                "vision_model.encoder.layers.22.attn.proj.bias": "model-00001-of-00004.safetensors",
         | 
| 566 | 
            +
                "vision_model.encoder.layers.22.attn.proj.weight": "model-00001-of-00004.safetensors",
         | 
| 567 | 
            +
                "vision_model.encoder.layers.22.attn.qkv.bias": "model-00001-of-00004.safetensors",
         | 
| 568 | 
            +
                "vision_model.encoder.layers.22.attn.qkv.weight": "model-00001-of-00004.safetensors",
         | 
| 569 | 
            +
                "vision_model.encoder.layers.22.ls1": "model-00001-of-00004.safetensors",
         | 
| 570 | 
            +
                "vision_model.encoder.layers.22.ls2": "model-00001-of-00004.safetensors",
         | 
| 571 | 
            +
                "vision_model.encoder.layers.22.mlp.fc1.bias": "model-00001-of-00004.safetensors",
         | 
| 572 | 
            +
                "vision_model.encoder.layers.22.mlp.fc1.weight": "model-00001-of-00004.safetensors",
         | 
| 573 | 
            +
                "vision_model.encoder.layers.22.mlp.fc2.bias": "model-00001-of-00004.safetensors",
         | 
| 574 | 
            +
                "vision_model.encoder.layers.22.mlp.fc2.weight": "model-00001-of-00004.safetensors",
         | 
| 575 | 
            +
                "vision_model.encoder.layers.22.norm1.bias": "model-00001-of-00004.safetensors",
         | 
| 576 | 
            +
                "vision_model.encoder.layers.22.norm1.weight": "model-00001-of-00004.safetensors",
         | 
| 577 | 
            +
                "vision_model.encoder.layers.22.norm2.bias": "model-00001-of-00004.safetensors",
         | 
| 578 | 
            +
                "vision_model.encoder.layers.22.norm2.weight": "model-00001-of-00004.safetensors",
         | 
| 579 | 
            +
                "vision_model.encoder.layers.23.attn.proj.bias": "model-00001-of-00004.safetensors",
         | 
| 580 | 
            +
                "vision_model.encoder.layers.23.attn.proj.weight": "model-00001-of-00004.safetensors",
         | 
| 581 | 
            +
                "vision_model.encoder.layers.23.attn.qkv.bias": "model-00001-of-00004.safetensors",
         | 
| 582 | 
            +
                "vision_model.encoder.layers.23.attn.qkv.weight": "model-00001-of-00004.safetensors",
         | 
| 583 | 
            +
                "vision_model.encoder.layers.23.ls1": "model-00001-of-00004.safetensors",
         | 
| 584 | 
            +
                "vision_model.encoder.layers.23.ls2": "model-00001-of-00004.safetensors",
         | 
| 585 | 
            +
                "vision_model.encoder.layers.23.mlp.fc1.bias": "model-00001-of-00004.safetensors",
         | 
| 586 | 
            +
                "vision_model.encoder.layers.23.mlp.fc1.weight": "model-00001-of-00004.safetensors",
         | 
| 587 | 
            +
                "vision_model.encoder.layers.23.mlp.fc2.bias": "model-00001-of-00004.safetensors",
         | 
| 588 | 
            +
                "vision_model.encoder.layers.23.mlp.fc2.weight": "model-00001-of-00004.safetensors",
         | 
| 589 | 
            +
                "vision_model.encoder.layers.23.norm1.bias": "model-00001-of-00004.safetensors",
         | 
| 590 | 
            +
                "vision_model.encoder.layers.23.norm1.weight": "model-00001-of-00004.safetensors",
         | 
| 591 | 
            +
                "vision_model.encoder.layers.23.norm2.bias": "model-00001-of-00004.safetensors",
         | 
| 592 | 
            +
                "vision_model.encoder.layers.23.norm2.weight": "model-00001-of-00004.safetensors",
         | 
| 593 | 
            +
                "vision_model.encoder.layers.3.attn.proj.bias": "model-00001-of-00004.safetensors",
         | 
| 594 | 
            +
                "vision_model.encoder.layers.3.attn.proj.weight": "model-00001-of-00004.safetensors",
         | 
| 595 | 
            +
                "vision_model.encoder.layers.3.attn.qkv.bias": "model-00001-of-00004.safetensors",
         | 
| 596 | 
            +
                "vision_model.encoder.layers.3.attn.qkv.weight": "model-00001-of-00004.safetensors",
         | 
| 597 | 
            +
                "vision_model.encoder.layers.3.ls1": "model-00001-of-00004.safetensors",
         | 
| 598 | 
            +
                "vision_model.encoder.layers.3.ls2": "model-00001-of-00004.safetensors",
         | 
| 599 | 
            +
                "vision_model.encoder.layers.3.mlp.fc1.bias": "model-00001-of-00004.safetensors",
         | 
| 600 | 
            +
                "vision_model.encoder.layers.3.mlp.fc1.weight": "model-00001-of-00004.safetensors",
         | 
| 601 | 
            +
                "vision_model.encoder.layers.3.mlp.fc2.bias": "model-00001-of-00004.safetensors",
         | 
| 602 | 
            +
                "vision_model.encoder.layers.3.mlp.fc2.weight": "model-00001-of-00004.safetensors",
         | 
| 603 | 
            +
                "vision_model.encoder.layers.3.norm1.bias": "model-00001-of-00004.safetensors",
         | 
| 604 | 
            +
                "vision_model.encoder.layers.3.norm1.weight": "model-00001-of-00004.safetensors",
         | 
| 605 | 
            +
                "vision_model.encoder.layers.3.norm2.bias": "model-00001-of-00004.safetensors",
         | 
| 606 | 
            +
                "vision_model.encoder.layers.3.norm2.weight": "model-00001-of-00004.safetensors",
         | 
| 607 | 
            +
                "vision_model.encoder.layers.4.attn.proj.bias": "model-00001-of-00004.safetensors",
         | 
| 608 | 
            +
                "vision_model.encoder.layers.4.attn.proj.weight": "model-00001-of-00004.safetensors",
         | 
| 609 | 
            +
                "vision_model.encoder.layers.4.attn.qkv.bias": "model-00001-of-00004.safetensors",
         | 
| 610 | 
            +
                "vision_model.encoder.layers.4.attn.qkv.weight": "model-00001-of-00004.safetensors",
         | 
| 611 | 
            +
                "vision_model.encoder.layers.4.ls1": "model-00001-of-00004.safetensors",
         | 
| 612 | 
            +
                "vision_model.encoder.layers.4.ls2": "model-00001-of-00004.safetensors",
         | 
| 613 | 
            +
                "vision_model.encoder.layers.4.mlp.fc1.bias": "model-00001-of-00004.safetensors",
         | 
| 614 | 
            +
                "vision_model.encoder.layers.4.mlp.fc1.weight": "model-00001-of-00004.safetensors",
         | 
| 615 | 
            +
                "vision_model.encoder.layers.4.mlp.fc2.bias": "model-00001-of-00004.safetensors",
         | 
| 616 | 
            +
                "vision_model.encoder.layers.4.mlp.fc2.weight": "model-00001-of-00004.safetensors",
         | 
| 617 | 
            +
                "vision_model.encoder.layers.4.norm1.bias": "model-00001-of-00004.safetensors",
         | 
| 618 | 
            +
                "vision_model.encoder.layers.4.norm1.weight": "model-00001-of-00004.safetensors",
         | 
| 619 | 
            +
                "vision_model.encoder.layers.4.norm2.bias": "model-00001-of-00004.safetensors",
         | 
| 620 | 
            +
                "vision_model.encoder.layers.4.norm2.weight": "model-00001-of-00004.safetensors",
         | 
| 621 | 
            +
                "vision_model.encoder.layers.5.attn.proj.bias": "model-00001-of-00004.safetensors",
         | 
| 622 | 
            +
                "vision_model.encoder.layers.5.attn.proj.weight": "model-00001-of-00004.safetensors",
         | 
| 623 | 
            +
                "vision_model.encoder.layers.5.attn.qkv.bias": "model-00001-of-00004.safetensors",
         | 
| 624 | 
            +
                "vision_model.encoder.layers.5.attn.qkv.weight": "model-00001-of-00004.safetensors",
         | 
| 625 | 
            +
                "vision_model.encoder.layers.5.ls1": "model-00001-of-00004.safetensors",
         | 
| 626 | 
            +
                "vision_model.encoder.layers.5.ls2": "model-00001-of-00004.safetensors",
         | 
| 627 | 
            +
                "vision_model.encoder.layers.5.mlp.fc1.bias": "model-00001-of-00004.safetensors",
         | 
| 628 | 
            +
                "vision_model.encoder.layers.5.mlp.fc1.weight": "model-00001-of-00004.safetensors",
         | 
| 629 | 
            +
                "vision_model.encoder.layers.5.mlp.fc2.bias": "model-00001-of-00004.safetensors",
         | 
| 630 | 
            +
                "vision_model.encoder.layers.5.mlp.fc2.weight": "model-00001-of-00004.safetensors",
         | 
| 631 | 
            +
                "vision_model.encoder.layers.5.norm1.bias": "model-00001-of-00004.safetensors",
         | 
| 632 | 
            +
                "vision_model.encoder.layers.5.norm1.weight": "model-00001-of-00004.safetensors",
         | 
| 633 | 
            +
                "vision_model.encoder.layers.5.norm2.bias": "model-00001-of-00004.safetensors",
         | 
| 634 | 
            +
                "vision_model.encoder.layers.5.norm2.weight": "model-00001-of-00004.safetensors",
         | 
| 635 | 
            +
                "vision_model.encoder.layers.6.attn.proj.bias": "model-00001-of-00004.safetensors",
         | 
| 636 | 
            +
                "vision_model.encoder.layers.6.attn.proj.weight": "model-00001-of-00004.safetensors",
         | 
| 637 | 
            +
                "vision_model.encoder.layers.6.attn.qkv.bias": "model-00001-of-00004.safetensors",
         | 
| 638 | 
            +
                "vision_model.encoder.layers.6.attn.qkv.weight": "model-00001-of-00004.safetensors",
         | 
| 639 | 
            +
                "vision_model.encoder.layers.6.ls1": "model-00001-of-00004.safetensors",
         | 
| 640 | 
            +
                "vision_model.encoder.layers.6.ls2": "model-00001-of-00004.safetensors",
         | 
| 641 | 
            +
                "vision_model.encoder.layers.6.mlp.fc1.bias": "model-00001-of-00004.safetensors",
         | 
| 642 | 
            +
                "vision_model.encoder.layers.6.mlp.fc1.weight": "model-00001-of-00004.safetensors",
         | 
| 643 | 
            +
                "vision_model.encoder.layers.6.mlp.fc2.bias": "model-00001-of-00004.safetensors",
         | 
| 644 | 
            +
                "vision_model.encoder.layers.6.mlp.fc2.weight": "model-00001-of-00004.safetensors",
         | 
| 645 | 
            +
                "vision_model.encoder.layers.6.norm1.bias": "model-00001-of-00004.safetensors",
         | 
| 646 | 
            +
                "vision_model.encoder.layers.6.norm1.weight": "model-00001-of-00004.safetensors",
         | 
| 647 | 
            +
                "vision_model.encoder.layers.6.norm2.bias": "model-00001-of-00004.safetensors",
         | 
| 648 | 
            +
                "vision_model.encoder.layers.6.norm2.weight": "model-00001-of-00004.safetensors",
         | 
| 649 | 
            +
                "vision_model.encoder.layers.7.attn.proj.bias": "model-00001-of-00004.safetensors",
         | 
| 650 | 
            +
                "vision_model.encoder.layers.7.attn.proj.weight": "model-00001-of-00004.safetensors",
         | 
| 651 | 
            +
                "vision_model.encoder.layers.7.attn.qkv.bias": "model-00001-of-00004.safetensors",
         | 
| 652 | 
            +
                "vision_model.encoder.layers.7.attn.qkv.weight": "model-00001-of-00004.safetensors",
         | 
| 653 | 
            +
                "vision_model.encoder.layers.7.ls1": "model-00001-of-00004.safetensors",
         | 
| 654 | 
            +
                "vision_model.encoder.layers.7.ls2": "model-00001-of-00004.safetensors",
         | 
| 655 | 
            +
                "vision_model.encoder.layers.7.mlp.fc1.bias": "model-00001-of-00004.safetensors",
         | 
| 656 | 
            +
                "vision_model.encoder.layers.7.mlp.fc1.weight": "model-00001-of-00004.safetensors",
         | 
| 657 | 
            +
                "vision_model.encoder.layers.7.mlp.fc2.bias": "model-00001-of-00004.safetensors",
         | 
| 658 | 
            +
                "vision_model.encoder.layers.7.mlp.fc2.weight": "model-00001-of-00004.safetensors",
         | 
| 659 | 
            +
                "vision_model.encoder.layers.7.norm1.bias": "model-00001-of-00004.safetensors",
         | 
| 660 | 
            +
                "vision_model.encoder.layers.7.norm1.weight": "model-00001-of-00004.safetensors",
         | 
| 661 | 
            +
                "vision_model.encoder.layers.7.norm2.bias": "model-00001-of-00004.safetensors",
         | 
| 662 | 
            +
                "vision_model.encoder.layers.7.norm2.weight": "model-00001-of-00004.safetensors",
         | 
| 663 | 
            +
                "vision_model.encoder.layers.8.attn.proj.bias": "model-00001-of-00004.safetensors",
         | 
| 664 | 
            +
                "vision_model.encoder.layers.8.attn.proj.weight": "model-00001-of-00004.safetensors",
         | 
| 665 | 
            +
                "vision_model.encoder.layers.8.attn.qkv.bias": "model-00001-of-00004.safetensors",
         | 
| 666 | 
            +
                "vision_model.encoder.layers.8.attn.qkv.weight": "model-00001-of-00004.safetensors",
         | 
| 667 | 
            +
                "vision_model.encoder.layers.8.ls1": "model-00001-of-00004.safetensors",
         | 
| 668 | 
            +
                "vision_model.encoder.layers.8.ls2": "model-00001-of-00004.safetensors",
         | 
| 669 | 
            +
                "vision_model.encoder.layers.8.mlp.fc1.bias": "model-00001-of-00004.safetensors",
         | 
| 670 | 
            +
                "vision_model.encoder.layers.8.mlp.fc1.weight": "model-00001-of-00004.safetensors",
         | 
| 671 | 
            +
                "vision_model.encoder.layers.8.mlp.fc2.bias": "model-00001-of-00004.safetensors",
         | 
| 672 | 
            +
                "vision_model.encoder.layers.8.mlp.fc2.weight": "model-00001-of-00004.safetensors",
         | 
| 673 | 
            +
                "vision_model.encoder.layers.8.norm1.bias": "model-00001-of-00004.safetensors",
         | 
| 674 | 
            +
                "vision_model.encoder.layers.8.norm1.weight": "model-00001-of-00004.safetensors",
         | 
| 675 | 
            +
                "vision_model.encoder.layers.8.norm2.bias": "model-00001-of-00004.safetensors",
         | 
| 676 | 
            +
                "vision_model.encoder.layers.8.norm2.weight": "model-00001-of-00004.safetensors",
         | 
| 677 | 
            +
                "vision_model.encoder.layers.9.attn.proj.bias": "model-00001-of-00004.safetensors",
         | 
| 678 | 
            +
                "vision_model.encoder.layers.9.attn.proj.weight": "model-00001-of-00004.safetensors",
         | 
| 679 | 
            +
                "vision_model.encoder.layers.9.attn.qkv.bias": "model-00001-of-00004.safetensors",
         | 
| 680 | 
            +
                "vision_model.encoder.layers.9.attn.qkv.weight": "model-00001-of-00004.safetensors",
         | 
| 681 | 
            +
                "vision_model.encoder.layers.9.ls1": "model-00001-of-00004.safetensors",
         | 
| 682 | 
            +
                "vision_model.encoder.layers.9.ls2": "model-00001-of-00004.safetensors",
         | 
| 683 | 
            +
                "vision_model.encoder.layers.9.mlp.fc1.bias": "model-00001-of-00004.safetensors",
         | 
| 684 | 
            +
                "vision_model.encoder.layers.9.mlp.fc1.weight": "model-00001-of-00004.safetensors",
         | 
| 685 | 
            +
                "vision_model.encoder.layers.9.mlp.fc2.bias": "model-00001-of-00004.safetensors",
         | 
| 686 | 
            +
                "vision_model.encoder.layers.9.mlp.fc2.weight": "model-00001-of-00004.safetensors",
         | 
| 687 | 
            +
                "vision_model.encoder.layers.9.norm1.bias": "model-00001-of-00004.safetensors",
         | 
| 688 | 
            +
                "vision_model.encoder.layers.9.norm1.weight": "model-00001-of-00004.safetensors",
         | 
| 689 | 
            +
                "vision_model.encoder.layers.9.norm2.bias": "model-00001-of-00004.safetensors",
         | 
| 690 | 
            +
                "vision_model.encoder.layers.9.norm2.weight": "model-00001-of-00004.safetensors"
         | 
| 691 | 
            +
              }
         | 
| 692 | 
            +
            }
         | 
    	
        modeling_intern_vit.py
    ADDED
    
    | @@ -0,0 +1,431 @@ | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            # --------------------------------------------------------
         | 
| 2 | 
            +
            # InternVL
         | 
| 3 | 
            +
            # Copyright (c) 2024 OpenGVLab
         | 
| 4 | 
            +
            # Licensed under The MIT License [see LICENSE for details]
         | 
| 5 | 
            +
            # --------------------------------------------------------
         | 
| 6 | 
            +
             | 
| 7 | 
            +
            from typing import Optional, Tuple, Union
         | 
| 8 | 
            +
             | 
| 9 | 
            +
            import torch
         | 
| 10 | 
            +
            import torch.nn.functional as F
         | 
| 11 | 
            +
            import torch.utils.checkpoint
         | 
| 12 | 
            +
            from einops import rearrange
         | 
| 13 | 
            +
            from timm.layers import DropPath
         | 
| 14 | 
            +
            from torch import nn
         | 
| 15 | 
            +
            from transformers.activations import ACT2FN
         | 
| 16 | 
            +
            from transformers.modeling_outputs import (BaseModelOutput,
         | 
| 17 | 
            +
                                                       BaseModelOutputWithPooling)
         | 
| 18 | 
            +
            from transformers.modeling_utils import PreTrainedModel
         | 
| 19 | 
            +
            from transformers.utils import logging
         | 
| 20 | 
            +
             | 
| 21 | 
            +
            from .configuration_intern_vit import InternVisionConfig
         | 
| 22 | 
            +
             | 
| 23 | 
            +
            try:
         | 
| 24 | 
            +
                from flash_attn.bert_padding import pad_input, unpad_input
         | 
| 25 | 
            +
                from flash_attn.flash_attn_interface import \
         | 
| 26 | 
            +
                    flash_attn_varlen_qkvpacked_func
         | 
| 27 | 
            +
                has_flash_attn = True
         | 
| 28 | 
            +
            except:
         | 
| 29 | 
            +
                print('FlashAttention2 is not installed.')
         | 
| 30 | 
            +
                has_flash_attn = False
         | 
| 31 | 
            +
             | 
| 32 | 
            +
            logger = logging.get_logger(__name__)
         | 
| 33 | 
            +
             | 
| 34 | 
            +
             | 
| 35 | 
            +
            class FlashAttention(nn.Module):
         | 
| 36 | 
            +
                """Implement the scaled dot product attention with softmax.
         | 
| 37 | 
            +
                Arguments
         | 
| 38 | 
            +
                ---------
         | 
| 39 | 
            +
                    softmax_scale: The temperature to use for the softmax attention.
         | 
| 40 | 
            +
                                  (default: 1/sqrt(d_keys) where d_keys is computed at
         | 
| 41 | 
            +
                                  runtime)
         | 
| 42 | 
            +
                    attention_dropout: The dropout rate to apply to the attention
         | 
| 43 | 
            +
                                       (default: 0.0)
         | 
| 44 | 
            +
                """
         | 
| 45 | 
            +
             | 
| 46 | 
            +
                def __init__(self, softmax_scale=None, attention_dropout=0.0, device=None, dtype=None):
         | 
| 47 | 
            +
                    super().__init__()
         | 
| 48 | 
            +
                    self.softmax_scale = softmax_scale
         | 
| 49 | 
            +
                    self.dropout_p = attention_dropout
         | 
| 50 | 
            +
             | 
| 51 | 
            +
                def forward(self, qkv, key_padding_mask=None, causal=False, cu_seqlens=None,
         | 
| 52 | 
            +
                            max_s=None, need_weights=False):
         | 
| 53 | 
            +
                    """Implements the multihead softmax attention.
         | 
| 54 | 
            +
                    Arguments
         | 
| 55 | 
            +
                    ---------
         | 
| 56 | 
            +
                        qkv: The tensor containing the query, key, and value. (B, S, 3, H, D) if key_padding_mask is None
         | 
| 57 | 
            +
                            if unpadded: (nnz, 3, h, d)
         | 
| 58 | 
            +
                        key_padding_mask: a bool tensor of shape (B, S)
         | 
| 59 | 
            +
                    """
         | 
| 60 | 
            +
                    assert not need_weights
         | 
| 61 | 
            +
                    assert qkv.dtype in [torch.float16, torch.bfloat16]
         | 
| 62 | 
            +
                    assert qkv.is_cuda
         | 
| 63 | 
            +
             | 
| 64 | 
            +
                    if cu_seqlens is None:
         | 
| 65 | 
            +
                        batch_size = qkv.shape[0]
         | 
| 66 | 
            +
                        seqlen = qkv.shape[1]
         | 
| 67 | 
            +
                        if key_padding_mask is None:
         | 
| 68 | 
            +
                            qkv = rearrange(qkv, 'b s ... -> (b s) ...')
         | 
| 69 | 
            +
                            max_s = seqlen
         | 
| 70 | 
            +
                            cu_seqlens = torch.arange(0, (batch_size + 1) * seqlen, step=seqlen, dtype=torch.int32,
         | 
| 71 | 
            +
                                                      device=qkv.device)
         | 
| 72 | 
            +
                            output = flash_attn_varlen_qkvpacked_func(
         | 
| 73 | 
            +
                                qkv, cu_seqlens, max_s, self.dropout_p if self.training else 0.0,
         | 
| 74 | 
            +
                                softmax_scale=self.softmax_scale, causal=causal
         | 
| 75 | 
            +
                            )
         | 
| 76 | 
            +
                            output = rearrange(output, '(b s) ... -> b s ...', b=batch_size)
         | 
| 77 | 
            +
                        else:
         | 
| 78 | 
            +
                            nheads = qkv.shape[-2]
         | 
| 79 | 
            +
                            x = rearrange(qkv, 'b s three h d -> b s (three h d)')
         | 
| 80 | 
            +
                            x_unpad, indices, cu_seqlens, max_s = unpad_input(x, key_padding_mask)
         | 
| 81 | 
            +
                            x_unpad = rearrange(x_unpad, 'nnz (three h d) -> nnz three h d', three=3, h=nheads)
         | 
| 82 | 
            +
                            output_unpad = flash_attn_varlen_qkvpacked_func(
         | 
| 83 | 
            +
                                x_unpad, cu_seqlens, max_s, self.dropout_p if self.training else 0.0,
         | 
| 84 | 
            +
                                softmax_scale=self.softmax_scale, causal=causal
         | 
| 85 | 
            +
                            )
         | 
| 86 | 
            +
                            output = rearrange(pad_input(rearrange(output_unpad, 'nnz h d -> nnz (h d)'),
         | 
| 87 | 
            +
                                                         indices, batch_size, seqlen),
         | 
| 88 | 
            +
                                               'b s (h d) -> b s h d', h=nheads)
         | 
| 89 | 
            +
                    else:
         | 
| 90 | 
            +
                        assert max_s is not None
         | 
| 91 | 
            +
                        output = flash_attn_varlen_qkvpacked_func(
         | 
| 92 | 
            +
                            qkv, cu_seqlens, max_s, self.dropout_p if self.training else 0.0,
         | 
| 93 | 
            +
                            softmax_scale=self.softmax_scale, causal=causal
         | 
| 94 | 
            +
                        )
         | 
| 95 | 
            +
             | 
| 96 | 
            +
                    return output, None
         | 
| 97 | 
            +
             | 
| 98 | 
            +
             | 
| 99 | 
            +
            class InternRMSNorm(nn.Module):
         | 
| 100 | 
            +
                def __init__(self, hidden_size, eps=1e-6):
         | 
| 101 | 
            +
                    super().__init__()
         | 
| 102 | 
            +
                    self.weight = nn.Parameter(torch.ones(hidden_size))
         | 
| 103 | 
            +
                    self.variance_epsilon = eps
         | 
| 104 | 
            +
             | 
| 105 | 
            +
                def forward(self, hidden_states):
         | 
| 106 | 
            +
                    input_dtype = hidden_states.dtype
         | 
| 107 | 
            +
                    hidden_states = hidden_states.to(torch.float32)
         | 
| 108 | 
            +
                    variance = hidden_states.pow(2).mean(-1, keepdim=True)
         | 
| 109 | 
            +
                    hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon)
         | 
| 110 | 
            +
                    return self.weight * hidden_states.to(input_dtype)
         | 
| 111 | 
            +
             | 
| 112 | 
            +
             | 
| 113 | 
            +
            try:
         | 
| 114 | 
            +
                from apex.normalization import FusedRMSNorm
         | 
| 115 | 
            +
             | 
| 116 | 
            +
                InternRMSNorm = FusedRMSNorm  # noqa
         | 
| 117 | 
            +
             | 
| 118 | 
            +
                logger.info('Discovered apex.normalization.FusedRMSNorm - will use it instead of InternRMSNorm')
         | 
| 119 | 
            +
            except ImportError:
         | 
| 120 | 
            +
                # using the normal InternRMSNorm
         | 
| 121 | 
            +
                pass
         | 
| 122 | 
            +
            except Exception:
         | 
| 123 | 
            +
                logger.warning('discovered apex but it failed to load, falling back to InternRMSNorm')
         | 
| 124 | 
            +
                pass
         | 
| 125 | 
            +
             | 
| 126 | 
            +
             | 
| 127 | 
            +
            NORM2FN = {
         | 
| 128 | 
            +
                'rms_norm': InternRMSNorm,
         | 
| 129 | 
            +
                'layer_norm': nn.LayerNorm,
         | 
| 130 | 
            +
            }
         | 
| 131 | 
            +
             | 
| 132 | 
            +
             | 
| 133 | 
            +
            class InternVisionEmbeddings(nn.Module):
         | 
| 134 | 
            +
                def __init__(self, config: InternVisionConfig):
         | 
| 135 | 
            +
                    super().__init__()
         | 
| 136 | 
            +
                    self.config = config
         | 
| 137 | 
            +
                    self.embed_dim = config.hidden_size
         | 
| 138 | 
            +
                    self.image_size = config.image_size
         | 
| 139 | 
            +
                    self.patch_size = config.patch_size
         | 
| 140 | 
            +
             | 
| 141 | 
            +
                    self.class_embedding = nn.Parameter(
         | 
| 142 | 
            +
                        torch.randn(1, 1, self.embed_dim),
         | 
| 143 | 
            +
                    )
         | 
| 144 | 
            +
             | 
| 145 | 
            +
                    self.patch_embedding = nn.Conv2d(
         | 
| 146 | 
            +
                        in_channels=3, out_channels=self.embed_dim, kernel_size=self.patch_size, stride=self.patch_size
         | 
| 147 | 
            +
                    )
         | 
| 148 | 
            +
             | 
| 149 | 
            +
                    self.num_patches = (self.image_size // self.patch_size) ** 2
         | 
| 150 | 
            +
                    self.num_positions = self.num_patches + 1
         | 
| 151 | 
            +
             | 
| 152 | 
            +
                    self.position_embedding = nn.Parameter(torch.randn(1, self.num_positions, self.embed_dim))
         | 
| 153 | 
            +
             | 
| 154 | 
            +
                def _get_pos_embed(self, pos_embed, H, W):
         | 
| 155 | 
            +
                    target_dtype = pos_embed.dtype
         | 
| 156 | 
            +
                    pos_embed = pos_embed.float().reshape(
         | 
| 157 | 
            +
                        1, self.image_size // self.patch_size, self.image_size // self.patch_size, -1).permute(0, 3, 1, 2)
         | 
| 158 | 
            +
                    pos_embed = F.interpolate(pos_embed, size=(H, W), mode='bicubic', align_corners=False). \
         | 
| 159 | 
            +
                        reshape(1, -1, H * W).permute(0, 2, 1).to(target_dtype)
         | 
| 160 | 
            +
                    return pos_embed
         | 
| 161 | 
            +
             | 
| 162 | 
            +
                def forward(self, pixel_values: torch.FloatTensor) -> torch.Tensor:
         | 
| 163 | 
            +
                    target_dtype = self.patch_embedding.weight.dtype
         | 
| 164 | 
            +
                    patch_embeds = self.patch_embedding(pixel_values)  # shape = [*, channel, width, height]
         | 
| 165 | 
            +
                    batch_size, _, height, width = patch_embeds.shape
         | 
| 166 | 
            +
                    patch_embeds = patch_embeds.flatten(2).transpose(1, 2)
         | 
| 167 | 
            +
                    class_embeds = self.class_embedding.expand(batch_size, 1, -1).to(target_dtype)
         | 
| 168 | 
            +
                    embeddings = torch.cat([class_embeds, patch_embeds], dim=1)
         | 
| 169 | 
            +
                    position_embedding = torch.cat([
         | 
| 170 | 
            +
                        self.position_embedding[:, :1, :],
         | 
| 171 | 
            +
                        self._get_pos_embed(self.position_embedding[:, 1:, :], height, width)
         | 
| 172 | 
            +
                    ], dim=1)
         | 
| 173 | 
            +
                    embeddings = embeddings + position_embedding.to(target_dtype)
         | 
| 174 | 
            +
                    return embeddings
         | 
| 175 | 
            +
             | 
| 176 | 
            +
             | 
| 177 | 
            +
            class InternAttention(nn.Module):
         | 
| 178 | 
            +
                """Multi-headed attention from 'Attention Is All You Need' paper"""
         | 
| 179 | 
            +
             | 
| 180 | 
            +
                def __init__(self, config: InternVisionConfig):
         | 
| 181 | 
            +
                    super().__init__()
         | 
| 182 | 
            +
                    self.config = config
         | 
| 183 | 
            +
                    self.embed_dim = config.hidden_size
         | 
| 184 | 
            +
                    self.num_heads = config.num_attention_heads
         | 
| 185 | 
            +
                    self.use_flash_attn = config.use_flash_attn and has_flash_attn
         | 
| 186 | 
            +
                    if config.use_flash_attn and not has_flash_attn:
         | 
| 187 | 
            +
                        print('Warning: Flash Attention is not available, use_flash_attn is set to False.')
         | 
| 188 | 
            +
                    self.head_dim = self.embed_dim // self.num_heads
         | 
| 189 | 
            +
                    if self.head_dim * self.num_heads != self.embed_dim:
         | 
| 190 | 
            +
                        raise ValueError(
         | 
| 191 | 
            +
                            f'embed_dim must be divisible by num_heads (got `embed_dim`: {self.embed_dim} and `num_heads`:'
         | 
| 192 | 
            +
                            f' {self.num_heads}).'
         | 
| 193 | 
            +
                        )
         | 
| 194 | 
            +
             | 
| 195 | 
            +
                    self.scale = self.head_dim ** -0.5
         | 
| 196 | 
            +
                    self.qkv = nn.Linear(self.embed_dim, 3 * self.embed_dim, bias=config.qkv_bias)
         | 
| 197 | 
            +
                    self.attn_drop = nn.Dropout(config.attention_dropout)
         | 
| 198 | 
            +
                    self.proj_drop = nn.Dropout(config.dropout)
         | 
| 199 | 
            +
             | 
| 200 | 
            +
                    self.qk_normalization = config.qk_normalization
         | 
| 201 | 
            +
             | 
| 202 | 
            +
                    if self.qk_normalization:
         | 
| 203 | 
            +
                        self.q_norm = InternRMSNorm(self.embed_dim, eps=config.layer_norm_eps)
         | 
| 204 | 
            +
                        self.k_norm = InternRMSNorm(self.embed_dim, eps=config.layer_norm_eps)
         | 
| 205 | 
            +
             | 
| 206 | 
            +
                    if self.use_flash_attn:
         | 
| 207 | 
            +
                        self.inner_attn = FlashAttention(attention_dropout=config.attention_dropout)
         | 
| 208 | 
            +
                    self.proj = nn.Linear(self.embed_dim, self.embed_dim)
         | 
| 209 | 
            +
             | 
| 210 | 
            +
                def _naive_attn(self, x):
         | 
| 211 | 
            +
                    B, N, C = x.shape
         | 
| 212 | 
            +
                    qkv = self.qkv(x).reshape(B, N, 3, self.num_heads, C // self.num_heads).permute(2, 0, 3, 1, 4)
         | 
| 213 | 
            +
                    q, k, v = qkv.unbind(0)  # make torchscript happy (cannot use tensor as tuple)
         | 
| 214 | 
            +
             | 
| 215 | 
            +
                    if self.qk_normalization:
         | 
| 216 | 
            +
                        B_, H_, N_, D_ = q.shape
         | 
| 217 | 
            +
                        q = self.q_norm(q.transpose(1, 2).flatten(-2, -1)).view(B_, N_, H_, D_).transpose(1, 2)
         | 
| 218 | 
            +
                        k = self.k_norm(k.transpose(1, 2).flatten(-2, -1)).view(B_, N_, H_, D_).transpose(1, 2)
         | 
| 219 | 
            +
             | 
| 220 | 
            +
                    attn = ((q * self.scale) @ k.transpose(-2, -1))
         | 
| 221 | 
            +
                    attn = attn.softmax(dim=-1)
         | 
| 222 | 
            +
                    attn = self.attn_drop(attn)
         | 
| 223 | 
            +
             | 
| 224 | 
            +
                    x = (attn @ v).transpose(1, 2).reshape(B, N, C)
         | 
| 225 | 
            +
                    x = self.proj(x)
         | 
| 226 | 
            +
                    x = self.proj_drop(x)
         | 
| 227 | 
            +
                    return x
         | 
| 228 | 
            +
             | 
| 229 | 
            +
                def _flash_attn(self, x, key_padding_mask=None, need_weights=False):
         | 
| 230 | 
            +
                    qkv = self.qkv(x)
         | 
| 231 | 
            +
                    qkv = rearrange(qkv, 'b s (three h d) -> b s three h d', three=3, h=self.num_heads)
         | 
| 232 | 
            +
             | 
| 233 | 
            +
                    if self.qk_normalization:
         | 
| 234 | 
            +
                        q, k, v = qkv.unbind(2)
         | 
| 235 | 
            +
                        q = self.q_norm(q.flatten(-2, -1)).view(q.shape)
         | 
| 236 | 
            +
                        k = self.k_norm(k.flatten(-2, -1)).view(k.shape)
         | 
| 237 | 
            +
                        qkv = torch.stack([q, k, v], dim=2)
         | 
| 238 | 
            +
             | 
| 239 | 
            +
                    context, _ = self.inner_attn(
         | 
| 240 | 
            +
                        qkv, key_padding_mask=key_padding_mask, need_weights=need_weights, causal=False
         | 
| 241 | 
            +
                    )
         | 
| 242 | 
            +
                    outs = self.proj(rearrange(context, 'b s h d -> b s (h d)'))
         | 
| 243 | 
            +
                    outs = self.proj_drop(outs)
         | 
| 244 | 
            +
                    return outs
         | 
| 245 | 
            +
             | 
| 246 | 
            +
                def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
         | 
| 247 | 
            +
                    x = self._naive_attn(hidden_states) if not self.use_flash_attn else self._flash_attn(hidden_states)
         | 
| 248 | 
            +
                    return x
         | 
| 249 | 
            +
             | 
| 250 | 
            +
             | 
| 251 | 
            +
            class InternMLP(nn.Module):
         | 
| 252 | 
            +
                def __init__(self, config: InternVisionConfig):
         | 
| 253 | 
            +
                    super().__init__()
         | 
| 254 | 
            +
                    self.config = config
         | 
| 255 | 
            +
                    self.act = ACT2FN[config.hidden_act]
         | 
| 256 | 
            +
                    self.fc1 = nn.Linear(config.hidden_size, config.intermediate_size)
         | 
| 257 | 
            +
                    self.fc2 = nn.Linear(config.intermediate_size, config.hidden_size)
         | 
| 258 | 
            +
             | 
| 259 | 
            +
                def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
         | 
| 260 | 
            +
                    hidden_states = self.fc1(hidden_states)
         | 
| 261 | 
            +
                    hidden_states = self.act(hidden_states)
         | 
| 262 | 
            +
                    hidden_states = self.fc2(hidden_states)
         | 
| 263 | 
            +
                    return hidden_states
         | 
| 264 | 
            +
             | 
| 265 | 
            +
             | 
| 266 | 
            +
            class InternVisionEncoderLayer(nn.Module):
         | 
| 267 | 
            +
                def __init__(self, config: InternVisionConfig, drop_path_rate: float):
         | 
| 268 | 
            +
                    super().__init__()
         | 
| 269 | 
            +
                    self.embed_dim = config.hidden_size
         | 
| 270 | 
            +
                    self.intermediate_size = config.intermediate_size
         | 
| 271 | 
            +
                    self.norm_type = config.norm_type
         | 
| 272 | 
            +
             | 
| 273 | 
            +
                    self.attn = InternAttention(config)
         | 
| 274 | 
            +
                    self.mlp = InternMLP(config)
         | 
| 275 | 
            +
                    self.norm1 = NORM2FN[self.norm_type](self.embed_dim, eps=config.layer_norm_eps)
         | 
| 276 | 
            +
                    self.norm2 = NORM2FN[self.norm_type](self.embed_dim, eps=config.layer_norm_eps)
         | 
| 277 | 
            +
             | 
| 278 | 
            +
                    self.ls1 = nn.Parameter(config.initializer_factor * torch.ones(self.embed_dim))
         | 
| 279 | 
            +
                    self.ls2 = nn.Parameter(config.initializer_factor * torch.ones(self.embed_dim))
         | 
| 280 | 
            +
                    self.drop_path1 = DropPath(drop_path_rate) if drop_path_rate > 0. else nn.Identity()
         | 
| 281 | 
            +
                    self.drop_path2 = DropPath(drop_path_rate) if drop_path_rate > 0. else nn.Identity()
         | 
| 282 | 
            +
             | 
| 283 | 
            +
                def forward(
         | 
| 284 | 
            +
                        self,
         | 
| 285 | 
            +
                        hidden_states: torch.Tensor,
         | 
| 286 | 
            +
                ) -> Tuple[torch.FloatTensor, Optional[torch.FloatTensor], Optional[Tuple[torch.FloatTensor]]]:
         | 
| 287 | 
            +
                    """
         | 
| 288 | 
            +
                    Args:
         | 
| 289 | 
            +
                        hidden_states (`Tuple[torch.FloatTensor, Optional[torch.FloatTensor]]`): input to the layer of shape `(batch, seq_len, embed_dim)`
         | 
| 290 | 
            +
                    """
         | 
| 291 | 
            +
                    hidden_states = hidden_states + self.drop_path1(self.attn(self.norm1(hidden_states).to(hidden_states.dtype)) * self.ls1)
         | 
| 292 | 
            +
             | 
| 293 | 
            +
                    hidden_states = hidden_states + self.drop_path2(self.mlp(self.norm2(hidden_states).to(hidden_states.dtype)) * self.ls2)
         | 
| 294 | 
            +
             | 
| 295 | 
            +
                    return hidden_states
         | 
| 296 | 
            +
             | 
| 297 | 
            +
             | 
| 298 | 
            +
            class InternVisionEncoder(nn.Module):
         | 
| 299 | 
            +
                """
         | 
| 300 | 
            +
                Transformer encoder consisting of `config.num_hidden_layers` self attention layers. Each layer is a
         | 
| 301 | 
            +
                [`InternEncoderLayer`].
         | 
| 302 | 
            +
             | 
| 303 | 
            +
                Args:
         | 
| 304 | 
            +
                    config (`InternConfig`):
         | 
| 305 | 
            +
                        The corresponding vision configuration for the `InternEncoder`.
         | 
| 306 | 
            +
                """
         | 
| 307 | 
            +
             | 
| 308 | 
            +
                def __init__(self, config: InternVisionConfig):
         | 
| 309 | 
            +
                    super().__init__()
         | 
| 310 | 
            +
                    self.config = config
         | 
| 311 | 
            +
                    # stochastic depth decay rule
         | 
| 312 | 
            +
                    dpr = [x.item() for x in torch.linspace(0, config.drop_path_rate, config.num_hidden_layers)]
         | 
| 313 | 
            +
                    self.layers = nn.ModuleList([
         | 
| 314 | 
            +
                        InternVisionEncoderLayer(config, dpr[idx]) for idx in range(config.num_hidden_layers)])
         | 
| 315 | 
            +
                    self.gradient_checkpointing = True
         | 
| 316 | 
            +
             | 
| 317 | 
            +
                def forward(
         | 
| 318 | 
            +
                        self,
         | 
| 319 | 
            +
                        inputs_embeds,
         | 
| 320 | 
            +
                        output_hidden_states: Optional[bool] = None,
         | 
| 321 | 
            +
                        return_dict: Optional[bool] = None,
         | 
| 322 | 
            +
                ) -> Union[Tuple, BaseModelOutput]:
         | 
| 323 | 
            +
                    r"""
         | 
| 324 | 
            +
                    Args:
         | 
| 325 | 
            +
                        inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`):
         | 
| 326 | 
            +
                            Embedded representation of the inputs. Should be float, not int tokens.
         | 
| 327 | 
            +
                        output_hidden_states (`bool`, *optional*):
         | 
| 328 | 
            +
                            Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors
         | 
| 329 | 
            +
                            for more detail.
         | 
| 330 | 
            +
                        return_dict (`bool`, *optional*):
         | 
| 331 | 
            +
                            Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
         | 
| 332 | 
            +
                    """
         | 
| 333 | 
            +
                    output_hidden_states = (
         | 
| 334 | 
            +
                        output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
         | 
| 335 | 
            +
                    )
         | 
| 336 | 
            +
                    return_dict = return_dict if return_dict is not None else self.config.use_return_dict
         | 
| 337 | 
            +
             | 
| 338 | 
            +
                    encoder_states = () if output_hidden_states else None
         | 
| 339 | 
            +
                    hidden_states = inputs_embeds
         | 
| 340 | 
            +
             | 
| 341 | 
            +
                    for idx, encoder_layer in enumerate(self.layers):
         | 
| 342 | 
            +
                        if output_hidden_states:
         | 
| 343 | 
            +
                            encoder_states = encoder_states + (hidden_states,)
         | 
| 344 | 
            +
                        if self.gradient_checkpointing and self.training:
         | 
| 345 | 
            +
                            layer_outputs = torch.utils.checkpoint.checkpoint(
         | 
| 346 | 
            +
                                encoder_layer,
         | 
| 347 | 
            +
                                hidden_states)
         | 
| 348 | 
            +
                        else:
         | 
| 349 | 
            +
                            layer_outputs = encoder_layer(
         | 
| 350 | 
            +
                                hidden_states,
         | 
| 351 | 
            +
                            )
         | 
| 352 | 
            +
                        hidden_states = layer_outputs
         | 
| 353 | 
            +
             | 
| 354 | 
            +
                    if output_hidden_states:
         | 
| 355 | 
            +
                        encoder_states = encoder_states + (hidden_states,)
         | 
| 356 | 
            +
             | 
| 357 | 
            +
                    if not return_dict:
         | 
| 358 | 
            +
                        return tuple(v for v in [hidden_states, encoder_states] if v is not None)
         | 
| 359 | 
            +
                    return BaseModelOutput(
         | 
| 360 | 
            +
                        last_hidden_state=hidden_states, hidden_states=encoder_states
         | 
| 361 | 
            +
                    )
         | 
| 362 | 
            +
             | 
| 363 | 
            +
             | 
| 364 | 
            +
            class InternVisionModel(PreTrainedModel):
         | 
| 365 | 
            +
                main_input_name = 'pixel_values'
         | 
| 366 | 
            +
                _supports_flash_attn_2 = True
         | 
| 367 | 
            +
                supports_gradient_checkpointing = True
         | 
| 368 | 
            +
                config_class = InternVisionConfig
         | 
| 369 | 
            +
                _no_split_modules = ['InternVisionEncoderLayer']
         | 
| 370 | 
            +
             | 
| 371 | 
            +
                def __init__(self, config: InternVisionConfig):
         | 
| 372 | 
            +
                    super().__init__(config)
         | 
| 373 | 
            +
                    self.config = config
         | 
| 374 | 
            +
             | 
| 375 | 
            +
                    self.embeddings = InternVisionEmbeddings(config)
         | 
| 376 | 
            +
                    self.encoder = InternVisionEncoder(config)
         | 
| 377 | 
            +
             | 
| 378 | 
            +
                def resize_pos_embeddings(self, old_size, new_size, patch_size):
         | 
| 379 | 
            +
                    pos_emb = self.embeddings.position_embedding
         | 
| 380 | 
            +
                    _, num_positions, embed_dim = pos_emb.shape
         | 
| 381 | 
            +
                    cls_emb = pos_emb[:, :1, :]
         | 
| 382 | 
            +
                    pos_emb = pos_emb[:, 1:, :].reshape(1, old_size // patch_size, old_size // patch_size, -1).permute(0, 3, 1, 2)
         | 
| 383 | 
            +
                    pos_emb = F.interpolate(pos_emb.float(), size=new_size // patch_size, mode='bicubic', align_corners=False)
         | 
| 384 | 
            +
                    pos_emb = pos_emb.to(cls_emb.dtype).reshape(1, embed_dim, -1).permute(0, 2, 1)
         | 
| 385 | 
            +
                    pos_emb = torch.cat([cls_emb, pos_emb], dim=1)
         | 
| 386 | 
            +
                    self.embeddings.position_embedding = nn.Parameter(pos_emb)
         | 
| 387 | 
            +
                    self.embeddings.image_size = new_size
         | 
| 388 | 
            +
                    logger.info('Resized position embeddings from {} to {}'.format(old_size, new_size))
         | 
| 389 | 
            +
             | 
| 390 | 
            +
                def get_input_embeddings(self):
         | 
| 391 | 
            +
                    return self.embeddings
         | 
| 392 | 
            +
             | 
| 393 | 
            +
                def forward(
         | 
| 394 | 
            +
                        self,
         | 
| 395 | 
            +
                        pixel_values: Optional[torch.FloatTensor] = None,
         | 
| 396 | 
            +
                        output_hidden_states: Optional[bool] = None,
         | 
| 397 | 
            +
                        return_dict: Optional[bool] = None,
         | 
| 398 | 
            +
                        pixel_embeds: Optional[torch.FloatTensor] = None,
         | 
| 399 | 
            +
                ) -> Union[Tuple, BaseModelOutputWithPooling]:
         | 
| 400 | 
            +
                    output_hidden_states = (
         | 
| 401 | 
            +
                        output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
         | 
| 402 | 
            +
                    )
         | 
| 403 | 
            +
                    return_dict = return_dict if return_dict is not None else self.config.use_return_dict
         | 
| 404 | 
            +
             | 
| 405 | 
            +
                    if pixel_values is None and pixel_embeds is None:
         | 
| 406 | 
            +
                        raise ValueError('You have to specify pixel_values or pixel_embeds')
         | 
| 407 | 
            +
             | 
| 408 | 
            +
                    if pixel_embeds is not None:
         | 
| 409 | 
            +
                        hidden_states = pixel_embeds
         | 
| 410 | 
            +
                    else:
         | 
| 411 | 
            +
                        if len(pixel_values.shape) == 4:
         | 
| 412 | 
            +
                            hidden_states = self.embeddings(pixel_values)
         | 
| 413 | 
            +
                        else:
         | 
| 414 | 
            +
                            raise ValueError(f'wrong pixel_values size: {pixel_values.shape}')
         | 
| 415 | 
            +
                    encoder_outputs = self.encoder(
         | 
| 416 | 
            +
                        inputs_embeds=hidden_states,
         | 
| 417 | 
            +
                        output_hidden_states=output_hidden_states,
         | 
| 418 | 
            +
                        return_dict=return_dict,
         | 
| 419 | 
            +
                    )
         | 
| 420 | 
            +
                    last_hidden_state = encoder_outputs.last_hidden_state
         | 
| 421 | 
            +
                    pooled_output = last_hidden_state[:, 0, :]
         | 
| 422 | 
            +
             | 
| 423 | 
            +
                    if not return_dict:
         | 
| 424 | 
            +
                        return (last_hidden_state, pooled_output) + encoder_outputs[1:]
         | 
| 425 | 
            +
             | 
| 426 | 
            +
                    return BaseModelOutputWithPooling(
         | 
| 427 | 
            +
                        last_hidden_state=last_hidden_state,
         | 
| 428 | 
            +
                        pooler_output=pooled_output,
         | 
| 429 | 
            +
                        hidden_states=encoder_outputs.hidden_states,
         | 
| 430 | 
            +
                        attentions=encoder_outputs.attentions,
         | 
| 431 | 
            +
                    )
         | 
    	
        modeling_internvl_chat.py
    ADDED
    
    | @@ -0,0 +1,359 @@ | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            # --------------------------------------------------------
         | 
| 2 | 
            +
            # InternVL
         | 
| 3 | 
            +
            # Copyright (c) 2024 OpenGVLab
         | 
| 4 | 
            +
            # Licensed under The MIT License [see LICENSE for details]
         | 
| 5 | 
            +
            # --------------------------------------------------------
         | 
| 6 | 
            +
             | 
| 7 | 
            +
            import warnings
         | 
| 8 | 
            +
            from typing import List, Optional, Tuple, Union
         | 
| 9 | 
            +
             | 
| 10 | 
            +
            import torch.utils.checkpoint
         | 
| 11 | 
            +
            import transformers
         | 
| 12 | 
            +
            from torch import nn
         | 
| 13 | 
            +
            from torch.nn import CrossEntropyLoss
         | 
| 14 | 
            +
            from transformers import (AutoModel, GenerationConfig, LlamaForCausalLM,
         | 
| 15 | 
            +
                                      Qwen2ForCausalLM)
         | 
| 16 | 
            +
            from transformers.modeling_outputs import CausalLMOutputWithPast
         | 
| 17 | 
            +
            from transformers.modeling_utils import PreTrainedModel
         | 
| 18 | 
            +
            from transformers.utils import ModelOutput, logging
         | 
| 19 | 
            +
             | 
| 20 | 
            +
            from .configuration_internvl_chat import InternVLChatConfig
         | 
| 21 | 
            +
            from .conversation import get_conv_template
         | 
| 22 | 
            +
            from .modeling_intern_vit import InternVisionModel, has_flash_attn
         | 
| 23 | 
            +
             | 
| 24 | 
            +
            logger = logging.get_logger(__name__)
         | 
| 25 | 
            +
             | 
| 26 | 
            +
             | 
| 27 | 
            +
            def version_cmp(v1, v2, op='eq'):
         | 
| 28 | 
            +
                import operator
         | 
| 29 | 
            +
             | 
| 30 | 
            +
                from packaging import version
         | 
| 31 | 
            +
                op_func = getattr(operator, op)
         | 
| 32 | 
            +
                return op_func(version.parse(v1), version.parse(v2))
         | 
| 33 | 
            +
             | 
| 34 | 
            +
             | 
| 35 | 
            +
            class InternVLChatModel(PreTrainedModel):
         | 
| 36 | 
            +
                config_class = InternVLChatConfig
         | 
| 37 | 
            +
                main_input_name = 'pixel_values'
         | 
| 38 | 
            +
                base_model_prefix = 'language_model'
         | 
| 39 | 
            +
                _supports_flash_attn_2 = True
         | 
| 40 | 
            +
                supports_gradient_checkpointing = True
         | 
| 41 | 
            +
                _no_split_modules = ['InternVisionModel', 'LlamaDecoderLayer', 'Qwen2DecoderLayer']
         | 
| 42 | 
            +
             | 
| 43 | 
            +
                def __init__(self, config: InternVLChatConfig, vision_model=None, language_model=None, use_flash_attn=True):
         | 
| 44 | 
            +
                    super().__init__(config)
         | 
| 45 | 
            +
             | 
| 46 | 
            +
                    assert version_cmp(transformers.__version__, '4.37.0', 'ge')
         | 
| 47 | 
            +
                    image_size = config.force_image_size or config.vision_config.image_size
         | 
| 48 | 
            +
                    patch_size = config.vision_config.patch_size
         | 
| 49 | 
            +
                    self.patch_size = patch_size
         | 
| 50 | 
            +
                    self.select_layer = config.select_layer
         | 
| 51 | 
            +
                    self.template = config.template
         | 
| 52 | 
            +
                    self.num_image_token = int((image_size // patch_size) ** 2 * (config.downsample_ratio ** 2))
         | 
| 53 | 
            +
                    self.downsample_ratio = config.downsample_ratio
         | 
| 54 | 
            +
                    self.ps_version = config.ps_version
         | 
| 55 | 
            +
                    use_flash_attn = use_flash_attn if has_flash_attn else False
         | 
| 56 | 
            +
                    config.vision_config.use_flash_attn = True if use_flash_attn else False
         | 
| 57 | 
            +
                    config.llm_config._attn_implementation = 'flash_attention_2' if use_flash_attn else 'eager'
         | 
| 58 | 
            +
             | 
| 59 | 
            +
                    logger.info(f'num_image_token: {self.num_image_token}')
         | 
| 60 | 
            +
                    logger.info(f'ps_version: {self.ps_version}')
         | 
| 61 | 
            +
                    if vision_model is not None:
         | 
| 62 | 
            +
                        self.vision_model = vision_model
         | 
| 63 | 
            +
                    else:
         | 
| 64 | 
            +
                        self.vision_model = InternVisionModel(config.vision_config)
         | 
| 65 | 
            +
                    if language_model is not None:
         | 
| 66 | 
            +
                        self.language_model = language_model
         | 
| 67 | 
            +
                    else:
         | 
| 68 | 
            +
                        if config.llm_config.architectures[0] == 'LlamaForCausalLM':
         | 
| 69 | 
            +
                            self.language_model = LlamaForCausalLM(config.llm_config)
         | 
| 70 | 
            +
                        elif config.llm_config.architectures[0] == 'Qwen2ForCausalLM':
         | 
| 71 | 
            +
                            self.language_model = Qwen2ForCausalLM(config.llm_config)
         | 
| 72 | 
            +
                        else:
         | 
| 73 | 
            +
                            raise NotImplementedError(f'{config.llm_config.architectures[0]} is not implemented.')
         | 
| 74 | 
            +
             | 
| 75 | 
            +
                    vit_hidden_size = config.vision_config.hidden_size
         | 
| 76 | 
            +
                    llm_hidden_size = config.llm_config.hidden_size
         | 
| 77 | 
            +
             | 
| 78 | 
            +
                    self.mlp1 = nn.Sequential(
         | 
| 79 | 
            +
                        nn.LayerNorm(vit_hidden_size * int(1 / self.downsample_ratio) ** 2),
         | 
| 80 | 
            +
                        nn.Linear(vit_hidden_size * int(1 / self.downsample_ratio) ** 2, llm_hidden_size),
         | 
| 81 | 
            +
                        nn.GELU(),
         | 
| 82 | 
            +
                        nn.Linear(llm_hidden_size, llm_hidden_size)
         | 
| 83 | 
            +
                    )
         | 
| 84 | 
            +
             | 
| 85 | 
            +
                    self.img_context_token_id = None
         | 
| 86 | 
            +
                    self.conv_template = get_conv_template(self.template)
         | 
| 87 | 
            +
                    self.system_message = self.conv_template.system_message
         | 
| 88 | 
            +
             | 
| 89 | 
            +
                def forward(
         | 
| 90 | 
            +
                        self,
         | 
| 91 | 
            +
                        pixel_values: torch.FloatTensor,
         | 
| 92 | 
            +
                        input_ids: torch.LongTensor = None,
         | 
| 93 | 
            +
                        attention_mask: Optional[torch.Tensor] = None,
         | 
| 94 | 
            +
                        position_ids: Optional[torch.LongTensor] = None,
         | 
| 95 | 
            +
                        image_flags: Optional[torch.LongTensor] = None,
         | 
| 96 | 
            +
                        past_key_values: Optional[List[torch.FloatTensor]] = None,
         | 
| 97 | 
            +
                        labels: Optional[torch.LongTensor] = None,
         | 
| 98 | 
            +
                        use_cache: Optional[bool] = None,
         | 
| 99 | 
            +
                        output_attentions: Optional[bool] = None,
         | 
| 100 | 
            +
                        output_hidden_states: Optional[bool] = None,
         | 
| 101 | 
            +
                        return_dict: Optional[bool] = None,
         | 
| 102 | 
            +
                ) -> Union[Tuple, CausalLMOutputWithPast]:
         | 
| 103 | 
            +
                    return_dict = return_dict if return_dict is not None else self.config.use_return_dict
         | 
| 104 | 
            +
             | 
| 105 | 
            +
                    image_flags = image_flags.squeeze(-1)
         | 
| 106 | 
            +
                    input_embeds = self.language_model.get_input_embeddings()(input_ids).clone()
         | 
| 107 | 
            +
             | 
| 108 | 
            +
                    vit_embeds = self.extract_feature(pixel_values)
         | 
| 109 | 
            +
                    vit_embeds = vit_embeds[image_flags == 1]
         | 
| 110 | 
            +
                    vit_batch_size = pixel_values.shape[0]
         | 
| 111 | 
            +
             | 
| 112 | 
            +
                    B, N, C = input_embeds.shape
         | 
| 113 | 
            +
                    input_embeds = input_embeds.reshape(B * N, C)
         | 
| 114 | 
            +
             | 
| 115 | 
            +
                    if torch.distributed.is_initialized() and torch.distributed.get_rank() == 0:
         | 
| 116 | 
            +
                        print(f'dynamic ViT batch size: {vit_batch_size}, images per sample: {vit_batch_size / B}, dynamic token length: {N}')
         | 
| 117 | 
            +
             | 
| 118 | 
            +
                    input_ids = input_ids.reshape(B * N)
         | 
| 119 | 
            +
                    selected = (input_ids == self.img_context_token_id)
         | 
| 120 | 
            +
                    try:
         | 
| 121 | 
            +
                        input_embeds[selected] = input_embeds[selected] * 0.0 + vit_embeds.reshape(-1, C)
         | 
| 122 | 
            +
                    except Exception as e:
         | 
| 123 | 
            +
                        vit_embeds = vit_embeds.reshape(-1, C)
         | 
| 124 | 
            +
                        print(f'warning: {e}, input_embeds[selected].shape={input_embeds[selected].shape}, '
         | 
| 125 | 
            +
                              f'vit_embeds.shape={vit_embeds.shape}')
         | 
| 126 | 
            +
                        n_token = min(selected.sum(), vit_embeds.size(0))
         | 
| 127 | 
            +
                        input_embeds[selected][:n_token] = input_embeds[selected][:n_token] * 0.0 + vit_embeds[:n_token]
         | 
| 128 | 
            +
             | 
| 129 | 
            +
                    input_embeds = input_embeds.reshape(B, N, C)
         | 
| 130 | 
            +
             | 
| 131 | 
            +
                    outputs = self.language_model(
         | 
| 132 | 
            +
                        inputs_embeds=input_embeds,
         | 
| 133 | 
            +
                        attention_mask=attention_mask,
         | 
| 134 | 
            +
                        position_ids=position_ids,
         | 
| 135 | 
            +
                        past_key_values=past_key_values,
         | 
| 136 | 
            +
                        use_cache=use_cache,
         | 
| 137 | 
            +
                        output_attentions=output_attentions,
         | 
| 138 | 
            +
                        output_hidden_states=output_hidden_states,
         | 
| 139 | 
            +
                        return_dict=return_dict,
         | 
| 140 | 
            +
                    )
         | 
| 141 | 
            +
                    logits = outputs.logits
         | 
| 142 | 
            +
             | 
| 143 | 
            +
                    loss = None
         | 
| 144 | 
            +
                    if labels is not None:
         | 
| 145 | 
            +
                        # Shift so that tokens < n predict n
         | 
| 146 | 
            +
                        shift_logits = logits[..., :-1, :].contiguous()
         | 
| 147 | 
            +
                        shift_labels = labels[..., 1:].contiguous()
         | 
| 148 | 
            +
                        # Flatten the tokens
         | 
| 149 | 
            +
                        loss_fct = CrossEntropyLoss()
         | 
| 150 | 
            +
                        shift_logits = shift_logits.view(-1, self.language_model.config.vocab_size)
         | 
| 151 | 
            +
                        shift_labels = shift_labels.view(-1)
         | 
| 152 | 
            +
                        # Enable model parallelism
         | 
| 153 | 
            +
                        shift_labels = shift_labels.to(shift_logits.device)
         | 
| 154 | 
            +
                        loss = loss_fct(shift_logits, shift_labels)
         | 
| 155 | 
            +
             | 
| 156 | 
            +
                    if not return_dict:
         | 
| 157 | 
            +
                        output = (logits,) + outputs[1:]
         | 
| 158 | 
            +
                        return (loss,) + output if loss is not None else output
         | 
| 159 | 
            +
             | 
| 160 | 
            +
                    return CausalLMOutputWithPast(
         | 
| 161 | 
            +
                        loss=loss,
         | 
| 162 | 
            +
                        logits=logits,
         | 
| 163 | 
            +
                        past_key_values=outputs.past_key_values,
         | 
| 164 | 
            +
                        hidden_states=outputs.hidden_states,
         | 
| 165 | 
            +
                        attentions=outputs.attentions,
         | 
| 166 | 
            +
                    )
         | 
| 167 | 
            +
             | 
| 168 | 
            +
                def pixel_shuffle(self, x, scale_factor=0.5):
         | 
| 169 | 
            +
                    n, w, h, c = x.size()
         | 
| 170 | 
            +
                    # N, W, H, C --> N, W, H * scale, C // scale
         | 
| 171 | 
            +
                    x = x.view(n, w, int(h * scale_factor), int(c / scale_factor))
         | 
| 172 | 
            +
                    # N, W, H * scale, C // scale --> N, H * scale, W, C // scale
         | 
| 173 | 
            +
                    x = x.permute(0, 2, 1, 3).contiguous()
         | 
| 174 | 
            +
                    # N, H * scale, W, C // scale --> N, H * scale, W * scale, C // (scale ** 2)
         | 
| 175 | 
            +
                    x = x.view(n, int(h * scale_factor), int(w * scale_factor),
         | 
| 176 | 
            +
                               int(c / (scale_factor * scale_factor)))
         | 
| 177 | 
            +
                    if self.ps_version == 'v1':
         | 
| 178 | 
            +
                        warnings.warn("In ps_version 'v1', the height and width have not been swapped back, "
         | 
| 179 | 
            +
                                      'which results in a transposed image.')
         | 
| 180 | 
            +
                    else:
         | 
| 181 | 
            +
                        x = x.permute(0, 2, 1, 3).contiguous()
         | 
| 182 | 
            +
                    return x
         | 
| 183 | 
            +
             | 
| 184 | 
            +
                def extract_feature(self, pixel_values):
         | 
| 185 | 
            +
                    if self.select_layer == -1:
         | 
| 186 | 
            +
                        vit_embeds = self.vision_model(
         | 
| 187 | 
            +
                            pixel_values=pixel_values,
         | 
| 188 | 
            +
                            output_hidden_states=False,
         | 
| 189 | 
            +
                            return_dict=True).last_hidden_state
         | 
| 190 | 
            +
                    else:
         | 
| 191 | 
            +
                        vit_embeds = self.vision_model(
         | 
| 192 | 
            +
                            pixel_values=pixel_values,
         | 
| 193 | 
            +
                            output_hidden_states=True,
         | 
| 194 | 
            +
                            return_dict=True).hidden_states[self.select_layer]
         | 
| 195 | 
            +
                    vit_embeds = vit_embeds[:, 1:, :]
         | 
| 196 | 
            +
             | 
| 197 | 
            +
                    h = w = int(vit_embeds.shape[1] ** 0.5)
         | 
| 198 | 
            +
                    vit_embeds = vit_embeds.reshape(vit_embeds.shape[0], h, w, -1)
         | 
| 199 | 
            +
                    vit_embeds = self.pixel_shuffle(vit_embeds, scale_factor=self.downsample_ratio)
         | 
| 200 | 
            +
                    vit_embeds = vit_embeds.reshape(vit_embeds.shape[0], -1, vit_embeds.shape[-1])
         | 
| 201 | 
            +
                    vit_embeds = self.mlp1(vit_embeds)
         | 
| 202 | 
            +
                    return vit_embeds
         | 
| 203 | 
            +
             | 
| 204 | 
            +
                def batch_chat(self, tokenizer, pixel_values, questions, generation_config, num_patches_list=None,
         | 
| 205 | 
            +
                               history=None, return_history=False, IMG_START_TOKEN='<img>', IMG_END_TOKEN='</img>',
         | 
| 206 | 
            +
                               IMG_CONTEXT_TOKEN='<IMG_CONTEXT>', verbose=False, image_counts=None):
         | 
| 207 | 
            +
                    if history is not None or return_history:
         | 
| 208 | 
            +
                        print('Now multi-turn chat is not supported in batch_chat.')
         | 
| 209 | 
            +
                        raise NotImplementedError
         | 
| 210 | 
            +
             | 
| 211 | 
            +
                    if image_counts is not None:
         | 
| 212 | 
            +
                        num_patches_list = image_counts
         | 
| 213 | 
            +
                        print('Warning: `image_counts` is deprecated. Please use `num_patches_list` instead.')
         | 
| 214 | 
            +
             | 
| 215 | 
            +
                    img_context_token_id = tokenizer.convert_tokens_to_ids(IMG_CONTEXT_TOKEN)
         | 
| 216 | 
            +
                    self.img_context_token_id = img_context_token_id
         | 
| 217 | 
            +
             | 
| 218 | 
            +
                    if verbose and pixel_values is not None:
         | 
| 219 | 
            +
                        image_bs = pixel_values.shape[0]
         | 
| 220 | 
            +
                        print(f'dynamic ViT batch size: {image_bs}')
         | 
| 221 | 
            +
             | 
| 222 | 
            +
                    queries = []
         | 
| 223 | 
            +
                    for idx, num_patches in enumerate(num_patches_list):
         | 
| 224 | 
            +
                        question = questions[idx]
         | 
| 225 | 
            +
                        if pixel_values is not None and '<image>' not in question:
         | 
| 226 | 
            +
                            question = '<image>\n' + question
         | 
| 227 | 
            +
                        template = get_conv_template(self.template)
         | 
| 228 | 
            +
                        template.system_message = self.system_message
         | 
| 229 | 
            +
                        template.append_message(template.roles[0], question)
         | 
| 230 | 
            +
                        template.append_message(template.roles[1], None)
         | 
| 231 | 
            +
                        query = template.get_prompt()
         | 
| 232 | 
            +
             | 
| 233 | 
            +
                        image_tokens = IMG_START_TOKEN + IMG_CONTEXT_TOKEN * self.num_image_token * num_patches + IMG_END_TOKEN
         | 
| 234 | 
            +
                        query = query.replace('<image>', image_tokens, 1)
         | 
| 235 | 
            +
                        queries.append(query)
         | 
| 236 | 
            +
             | 
| 237 | 
            +
                    tokenizer.padding_side = 'left'
         | 
| 238 | 
            +
                    model_inputs = tokenizer(queries, return_tensors='pt', padding=True)
         | 
| 239 | 
            +
                    input_ids = model_inputs['input_ids'].to(self.device)
         | 
| 240 | 
            +
                    attention_mask = model_inputs['attention_mask'].to(self.device)
         | 
| 241 | 
            +
                    eos_token_id = tokenizer.convert_tokens_to_ids(template.sep.strip())
         | 
| 242 | 
            +
                    generation_config['eos_token_id'] = eos_token_id
         | 
| 243 | 
            +
                    generation_output = self.generate(
         | 
| 244 | 
            +
                        pixel_values=pixel_values,
         | 
| 245 | 
            +
                        input_ids=input_ids,
         | 
| 246 | 
            +
                        attention_mask=attention_mask,
         | 
| 247 | 
            +
                        **generation_config
         | 
| 248 | 
            +
                    )
         | 
| 249 | 
            +
                    responses = tokenizer.batch_decode(generation_output, skip_special_tokens=True)
         | 
| 250 | 
            +
                    responses = [response.split(template.sep.strip())[0].strip() for response in responses]
         | 
| 251 | 
            +
                    return responses
         | 
| 252 | 
            +
             | 
| 253 | 
            +
                def chat(self, tokenizer, pixel_values, question, generation_config, history=None, return_history=False,
         | 
| 254 | 
            +
                         num_patches_list=None, IMG_START_TOKEN='<img>', IMG_END_TOKEN='</img>', IMG_CONTEXT_TOKEN='<IMG_CONTEXT>',
         | 
| 255 | 
            +
                         verbose=False):
         | 
| 256 | 
            +
             | 
| 257 | 
            +
                    if history is None and pixel_values is not None and '<image>' not in question:
         | 
| 258 | 
            +
                        question = '<image>\n' + question
         | 
| 259 | 
            +
             | 
| 260 | 
            +
                    if num_patches_list is None:
         | 
| 261 | 
            +
                        num_patches_list = [pixel_values.shape[0]] if pixel_values is not None else []
         | 
| 262 | 
            +
                    assert pixel_values is None or len(pixel_values) == sum(num_patches_list)
         | 
| 263 | 
            +
             | 
| 264 | 
            +
                    img_context_token_id = tokenizer.convert_tokens_to_ids(IMG_CONTEXT_TOKEN)
         | 
| 265 | 
            +
                    self.img_context_token_id = img_context_token_id
         | 
| 266 | 
            +
             | 
| 267 | 
            +
                    template = get_conv_template(self.template)
         | 
| 268 | 
            +
                    template.system_message = self.system_message
         | 
| 269 | 
            +
                    eos_token_id = tokenizer.convert_tokens_to_ids(template.sep.strip())
         | 
| 270 | 
            +
             | 
| 271 | 
            +
                    history = [] if history is None else history
         | 
| 272 | 
            +
                    for (old_question, old_answer) in history:
         | 
| 273 | 
            +
                        template.append_message(template.roles[0], old_question)
         | 
| 274 | 
            +
                        template.append_message(template.roles[1], old_answer)
         | 
| 275 | 
            +
                    template.append_message(template.roles[0], question)
         | 
| 276 | 
            +
                    template.append_message(template.roles[1], None)
         | 
| 277 | 
            +
                    query = template.get_prompt()
         | 
| 278 | 
            +
             | 
| 279 | 
            +
                    if verbose and pixel_values is not None:
         | 
| 280 | 
            +
                        image_bs = pixel_values.shape[0]
         | 
| 281 | 
            +
                        print(f'dynamic ViT batch size: {image_bs}')
         | 
| 282 | 
            +
             | 
| 283 | 
            +
                    for num_patches in num_patches_list:
         | 
| 284 | 
            +
                        image_tokens = IMG_START_TOKEN + IMG_CONTEXT_TOKEN * self.num_image_token * num_patches + IMG_END_TOKEN
         | 
| 285 | 
            +
                        query = query.replace('<image>', image_tokens, 1)
         | 
| 286 | 
            +
             | 
| 287 | 
            +
                    model_inputs = tokenizer(query, return_tensors='pt')
         | 
| 288 | 
            +
                    input_ids = model_inputs['input_ids'].to(self.device)
         | 
| 289 | 
            +
                    attention_mask = model_inputs['attention_mask'].to(self.device)
         | 
| 290 | 
            +
                    generation_config['eos_token_id'] = eos_token_id
         | 
| 291 | 
            +
                    generation_output = self.generate(
         | 
| 292 | 
            +
                        pixel_values=pixel_values,
         | 
| 293 | 
            +
                        input_ids=input_ids,
         | 
| 294 | 
            +
                        attention_mask=attention_mask,
         | 
| 295 | 
            +
                        **generation_config
         | 
| 296 | 
            +
                    )
         | 
| 297 | 
            +
                    response = tokenizer.batch_decode(generation_output, skip_special_tokens=True)[0]
         | 
| 298 | 
            +
                    response = response.split(template.sep.strip())[0].strip()
         | 
| 299 | 
            +
                    history.append((question, response))
         | 
| 300 | 
            +
                    if return_history:
         | 
| 301 | 
            +
                        return response, history
         | 
| 302 | 
            +
                    else:
         | 
| 303 | 
            +
                        query_to_print = query.replace(IMG_CONTEXT_TOKEN, '')
         | 
| 304 | 
            +
                        query_to_print = query_to_print.replace(f'{IMG_START_TOKEN}{IMG_END_TOKEN}', '<image>')
         | 
| 305 | 
            +
                        if verbose:
         | 
| 306 | 
            +
                            print(query_to_print, response)
         | 
| 307 | 
            +
                        return response
         | 
| 308 | 
            +
             | 
| 309 | 
            +
                @torch.no_grad()
         | 
| 310 | 
            +
                def generate(
         | 
| 311 | 
            +
                        self,
         | 
| 312 | 
            +
                        pixel_values: Optional[torch.FloatTensor] = None,
         | 
| 313 | 
            +
                        input_ids: Optional[torch.FloatTensor] = None,
         | 
| 314 | 
            +
                        attention_mask: Optional[torch.LongTensor] = None,
         | 
| 315 | 
            +
                        visual_features: Optional[torch.FloatTensor] = None,
         | 
| 316 | 
            +
                        generation_config: Optional[GenerationConfig] = None,
         | 
| 317 | 
            +
                        output_hidden_states: Optional[bool] = None,
         | 
| 318 | 
            +
                        **generate_kwargs,
         | 
| 319 | 
            +
                ) -> torch.LongTensor:
         | 
| 320 | 
            +
             | 
| 321 | 
            +
                    assert self.img_context_token_id is not None
         | 
| 322 | 
            +
                    if pixel_values is not None:
         | 
| 323 | 
            +
                        if visual_features is not None:
         | 
| 324 | 
            +
                            vit_embeds = visual_features
         | 
| 325 | 
            +
                        else:
         | 
| 326 | 
            +
                            vit_embeds = self.extract_feature(pixel_values)
         | 
| 327 | 
            +
                        input_embeds = self.language_model.get_input_embeddings()(input_ids)
         | 
| 328 | 
            +
                        B, N, C = input_embeds.shape
         | 
| 329 | 
            +
                        input_embeds = input_embeds.reshape(B * N, C)
         | 
| 330 | 
            +
             | 
| 331 | 
            +
                        input_ids = input_ids.reshape(B * N)
         | 
| 332 | 
            +
                        selected = (input_ids == self.img_context_token_id)
         | 
| 333 | 
            +
                        assert selected.sum() != 0
         | 
| 334 | 
            +
                        input_embeds[selected] = vit_embeds.reshape(-1, C).to(input_embeds.device)
         | 
| 335 | 
            +
             | 
| 336 | 
            +
                        input_embeds = input_embeds.reshape(B, N, C)
         | 
| 337 | 
            +
                    else:
         | 
| 338 | 
            +
                        input_embeds = self.language_model.get_input_embeddings()(input_ids)
         | 
| 339 | 
            +
             | 
| 340 | 
            +
                    outputs = self.language_model.generate(
         | 
| 341 | 
            +
                        inputs_embeds=input_embeds,
         | 
| 342 | 
            +
                        attention_mask=attention_mask,
         | 
| 343 | 
            +
                        generation_config=generation_config,
         | 
| 344 | 
            +
                        output_hidden_states=output_hidden_states,
         | 
| 345 | 
            +
                        use_cache=True,
         | 
| 346 | 
            +
                        **generate_kwargs,
         | 
| 347 | 
            +
                    )
         | 
| 348 | 
            +
             | 
| 349 | 
            +
                    return outputs
         | 
| 350 | 
            +
             | 
| 351 | 
            +
                @property
         | 
| 352 | 
            +
                def lm_head(self):
         | 
| 353 | 
            +
                    return self.language_model.get_output_embeddings()
         | 
| 354 | 
            +
             | 
| 355 | 
            +
                def get_input_embeddings(self):
         | 
| 356 | 
            +
                    return self.language_model.get_input_embeddings()
         | 
| 357 | 
            +
             | 
| 358 | 
            +
                def get_output_embeddings(self):
         | 
| 359 | 
            +
                    return self.language_model.get_output_embeddings()
         | 
    	
        preprocessor_config.json
    ADDED
    
    | @@ -0,0 +1,19 @@ | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            {
         | 
| 2 | 
            +
              "crop_size": 448,
         | 
| 3 | 
            +
              "do_center_crop": true,
         | 
| 4 | 
            +
              "do_normalize": true,
         | 
| 5 | 
            +
              "do_resize": true,
         | 
| 6 | 
            +
              "feature_extractor_type": "CLIPFeatureExtractor",
         | 
| 7 | 
            +
              "image_mean": [
         | 
| 8 | 
            +
                0.485,
         | 
| 9 | 
            +
                0.456,
         | 
| 10 | 
            +
                0.406
         | 
| 11 | 
            +
              ],
         | 
| 12 | 
            +
              "image_std": [
         | 
| 13 | 
            +
                0.229,
         | 
| 14 | 
            +
                0.224,
         | 
| 15 | 
            +
                0.225
         | 
| 16 | 
            +
              ],
         | 
| 17 | 
            +
              "resample": 3,
         | 
| 18 | 
            +
              "size": 448
         | 
| 19 | 
            +
            }
         | 
    	
        special_tokens_map.json
    ADDED
    
    | @@ -0,0 +1,31 @@ | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            {
         | 
| 2 | 
            +
              "additional_special_tokens": [
         | 
| 3 | 
            +
                "<|im_start|>",
         | 
| 4 | 
            +
                "<|im_end|>",
         | 
| 5 | 
            +
                "<|object_ref_start|>",
         | 
| 6 | 
            +
                "<|object_ref_end|>",
         | 
| 7 | 
            +
                "<|box_start|>",
         | 
| 8 | 
            +
                "<|box_end|>",
         | 
| 9 | 
            +
                "<|quad_start|>",
         | 
| 10 | 
            +
                "<|quad_end|>",
         | 
| 11 | 
            +
                "<|vision_start|>",
         | 
| 12 | 
            +
                "<|vision_end|>",
         | 
| 13 | 
            +
                "<|vision_pad|>",
         | 
| 14 | 
            +
                "<|image_pad|>",
         | 
| 15 | 
            +
                "<|video_pad|>"
         | 
| 16 | 
            +
              ],
         | 
| 17 | 
            +
              "eos_token": {
         | 
| 18 | 
            +
                "content": "<|im_end|>",
         | 
| 19 | 
            +
                "lstrip": false,
         | 
| 20 | 
            +
                "normalized": false,
         | 
| 21 | 
            +
                "rstrip": false,
         | 
| 22 | 
            +
                "single_word": false
         | 
| 23 | 
            +
              },
         | 
| 24 | 
            +
              "pad_token": {
         | 
| 25 | 
            +
                "content": "<|endoftext|>",
         | 
| 26 | 
            +
                "lstrip": false,
         | 
| 27 | 
            +
                "normalized": false,
         | 
| 28 | 
            +
                "rstrip": false,
         | 
| 29 | 
            +
                "single_word": false
         | 
| 30 | 
            +
              }
         | 
| 31 | 
            +
            }
         | 
    	
        tokenizer.json
    ADDED
    
    | The diff for this file is too large to render. 
		See raw diff | 
|  | 
    	
        tokenizer_config.json
    ADDED
    
    | @@ -0,0 +1,280 @@ | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            {
         | 
| 2 | 
            +
              "add_bos_token": false,
         | 
| 3 | 
            +
              "add_eos_token": false,
         | 
| 4 | 
            +
              "add_prefix_space": false,
         | 
| 5 | 
            +
              "added_tokens_decoder": {
         | 
| 6 | 
            +
                "151643": {
         | 
| 7 | 
            +
                  "content": "<|endoftext|>",
         | 
| 8 | 
            +
                  "lstrip": false,
         | 
| 9 | 
            +
                  "normalized": false,
         | 
| 10 | 
            +
                  "rstrip": false,
         | 
| 11 | 
            +
                  "single_word": false,
         | 
| 12 | 
            +
                  "special": true
         | 
| 13 | 
            +
                },
         | 
| 14 | 
            +
                "151644": {
         | 
| 15 | 
            +
                  "content": "<|im_start|>",
         | 
| 16 | 
            +
                  "lstrip": false,
         | 
| 17 | 
            +
                  "normalized": false,
         | 
| 18 | 
            +
                  "rstrip": false,
         | 
| 19 | 
            +
                  "single_word": false,
         | 
| 20 | 
            +
                  "special": true
         | 
| 21 | 
            +
                },
         | 
| 22 | 
            +
                "151645": {
         | 
| 23 | 
            +
                  "content": "<|im_end|>",
         | 
| 24 | 
            +
                  "lstrip": false,
         | 
| 25 | 
            +
                  "normalized": false,
         | 
| 26 | 
            +
                  "rstrip": false,
         | 
| 27 | 
            +
                  "single_word": false,
         | 
| 28 | 
            +
                  "special": true
         | 
| 29 | 
            +
                },
         | 
| 30 | 
            +
                "151646": {
         | 
| 31 | 
            +
                  "content": "<|object_ref_start|>",
         | 
| 32 | 
            +
                  "lstrip": false,
         | 
| 33 | 
            +
                  "normalized": false,
         | 
| 34 | 
            +
                  "rstrip": false,
         | 
| 35 | 
            +
                  "single_word": false,
         | 
| 36 | 
            +
                  "special": true
         | 
| 37 | 
            +
                },
         | 
| 38 | 
            +
                "151647": {
         | 
| 39 | 
            +
                  "content": "<|object_ref_end|>",
         | 
| 40 | 
            +
                  "lstrip": false,
         | 
| 41 | 
            +
                  "normalized": false,
         | 
| 42 | 
            +
                  "rstrip": false,
         | 
| 43 | 
            +
                  "single_word": false,
         | 
| 44 | 
            +
                  "special": true
         | 
| 45 | 
            +
                },
         | 
| 46 | 
            +
                "151648": {
         | 
| 47 | 
            +
                  "content": "<|box_start|>",
         | 
| 48 | 
            +
                  "lstrip": false,
         | 
| 49 | 
            +
                  "normalized": false,
         | 
| 50 | 
            +
                  "rstrip": false,
         | 
| 51 | 
            +
                  "single_word": false,
         | 
| 52 | 
            +
                  "special": true
         | 
| 53 | 
            +
                },
         | 
| 54 | 
            +
                "151649": {
         | 
| 55 | 
            +
                  "content": "<|box_end|>",
         | 
| 56 | 
            +
                  "lstrip": false,
         | 
| 57 | 
            +
                  "normalized": false,
         | 
| 58 | 
            +
                  "rstrip": false,
         | 
| 59 | 
            +
                  "single_word": false,
         | 
| 60 | 
            +
                  "special": true
         | 
| 61 | 
            +
                },
         | 
| 62 | 
            +
                "151650": {
         | 
| 63 | 
            +
                  "content": "<|quad_start|>",
         | 
| 64 | 
            +
                  "lstrip": false,
         | 
| 65 | 
            +
                  "normalized": false,
         | 
| 66 | 
            +
                  "rstrip": false,
         | 
| 67 | 
            +
                  "single_word": false,
         | 
| 68 | 
            +
                  "special": true
         | 
| 69 | 
            +
                },
         | 
| 70 | 
            +
                "151651": {
         | 
| 71 | 
            +
                  "content": "<|quad_end|>",
         | 
| 72 | 
            +
                  "lstrip": false,
         | 
| 73 | 
            +
                  "normalized": false,
         | 
| 74 | 
            +
                  "rstrip": false,
         | 
| 75 | 
            +
                  "single_word": false,
         | 
| 76 | 
            +
                  "special": true
         | 
| 77 | 
            +
                },
         | 
| 78 | 
            +
                "151652": {
         | 
| 79 | 
            +
                  "content": "<|vision_start|>",
         | 
| 80 | 
            +
                  "lstrip": false,
         | 
| 81 | 
            +
                  "normalized": false,
         | 
| 82 | 
            +
                  "rstrip": false,
         | 
| 83 | 
            +
                  "single_word": false,
         | 
| 84 | 
            +
                  "special": true
         | 
| 85 | 
            +
                },
         | 
| 86 | 
            +
                "151653": {
         | 
| 87 | 
            +
                  "content": "<|vision_end|>",
         | 
| 88 | 
            +
                  "lstrip": false,
         | 
| 89 | 
            +
                  "normalized": false,
         | 
| 90 | 
            +
                  "rstrip": false,
         | 
| 91 | 
            +
                  "single_word": false,
         | 
| 92 | 
            +
                  "special": true
         | 
| 93 | 
            +
                },
         | 
| 94 | 
            +
                "151654": {
         | 
| 95 | 
            +
                  "content": "<|vision_pad|>",
         | 
| 96 | 
            +
                  "lstrip": false,
         | 
| 97 | 
            +
                  "normalized": false,
         | 
| 98 | 
            +
                  "rstrip": false,
         | 
| 99 | 
            +
                  "single_word": false,
         | 
| 100 | 
            +
                  "special": true
         | 
| 101 | 
            +
                },
         | 
| 102 | 
            +
                "151655": {
         | 
| 103 | 
            +
                  "content": "<|image_pad|>",
         | 
| 104 | 
            +
                  "lstrip": false,
         | 
| 105 | 
            +
                  "normalized": false,
         | 
| 106 | 
            +
                  "rstrip": false,
         | 
| 107 | 
            +
                  "single_word": false,
         | 
| 108 | 
            +
                  "special": true
         | 
| 109 | 
            +
                },
         | 
| 110 | 
            +
                "151656": {
         | 
| 111 | 
            +
                  "content": "<|video_pad|>",
         | 
| 112 | 
            +
                  "lstrip": false,
         | 
| 113 | 
            +
                  "normalized": false,
         | 
| 114 | 
            +
                  "rstrip": false,
         | 
| 115 | 
            +
                  "single_word": false,
         | 
| 116 | 
            +
                  "special": true
         | 
| 117 | 
            +
                },
         | 
| 118 | 
            +
                "151657": {
         | 
| 119 | 
            +
                  "content": "<tool_call>",
         | 
| 120 | 
            +
                  "lstrip": false,
         | 
| 121 | 
            +
                  "normalized": false,
         | 
| 122 | 
            +
                  "rstrip": false,
         | 
| 123 | 
            +
                  "single_word": false,
         | 
| 124 | 
            +
                  "special": false
         | 
| 125 | 
            +
                },
         | 
| 126 | 
            +
                "151658": {
         | 
| 127 | 
            +
                  "content": "</tool_call>",
         | 
| 128 | 
            +
                  "lstrip": false,
         | 
| 129 | 
            +
                  "normalized": false,
         | 
| 130 | 
            +
                  "rstrip": false,
         | 
| 131 | 
            +
                  "single_word": false,
         | 
| 132 | 
            +
                  "special": false
         | 
| 133 | 
            +
                },
         | 
| 134 | 
            +
                "151659": {
         | 
| 135 | 
            +
                  "content": "<|fim_prefix|>",
         | 
| 136 | 
            +
                  "lstrip": false,
         | 
| 137 | 
            +
                  "normalized": false,
         | 
| 138 | 
            +
                  "rstrip": false,
         | 
| 139 | 
            +
                  "single_word": false,
         | 
| 140 | 
            +
                  "special": false
         | 
| 141 | 
            +
                },
         | 
| 142 | 
            +
                "151660": {
         | 
| 143 | 
            +
                  "content": "<|fim_middle|>",
         | 
| 144 | 
            +
                  "lstrip": false,
         | 
| 145 | 
            +
                  "normalized": false,
         | 
| 146 | 
            +
                  "rstrip": false,
         | 
| 147 | 
            +
                  "single_word": false,
         | 
| 148 | 
            +
                  "special": false
         | 
| 149 | 
            +
                },
         | 
| 150 | 
            +
                "151661": {
         | 
| 151 | 
            +
                  "content": "<|fim_suffix|>",
         | 
| 152 | 
            +
                  "lstrip": false,
         | 
| 153 | 
            +
                  "normalized": false,
         | 
| 154 | 
            +
                  "rstrip": false,
         | 
| 155 | 
            +
                  "single_word": false,
         | 
| 156 | 
            +
                  "special": false
         | 
| 157 | 
            +
                },
         | 
| 158 | 
            +
                "151662": {
         | 
| 159 | 
            +
                  "content": "<|fim_pad|>",
         | 
| 160 | 
            +
                  "lstrip": false,
         | 
| 161 | 
            +
                  "normalized": false,
         | 
| 162 | 
            +
                  "rstrip": false,
         | 
| 163 | 
            +
                  "single_word": false,
         | 
| 164 | 
            +
                  "special": false
         | 
| 165 | 
            +
                },
         | 
| 166 | 
            +
                "151663": {
         | 
| 167 | 
            +
                  "content": "<|repo_name|>",
         | 
| 168 | 
            +
                  "lstrip": false,
         | 
| 169 | 
            +
                  "normalized": false,
         | 
| 170 | 
            +
                  "rstrip": false,
         | 
| 171 | 
            +
                  "single_word": false,
         | 
| 172 | 
            +
                  "special": false
         | 
| 173 | 
            +
                },
         | 
| 174 | 
            +
                "151664": {
         | 
| 175 | 
            +
                  "content": "<|file_sep|>",
         | 
| 176 | 
            +
                  "lstrip": false,
         | 
| 177 | 
            +
                  "normalized": false,
         | 
| 178 | 
            +
                  "rstrip": false,
         | 
| 179 | 
            +
                  "single_word": false,
         | 
| 180 | 
            +
                  "special": false
         | 
| 181 | 
            +
                },
         | 
| 182 | 
            +
                "151665": {
         | 
| 183 | 
            +
                  "content": "<img>",
         | 
| 184 | 
            +
                  "lstrip": false,
         | 
| 185 | 
            +
                  "normalized": false,
         | 
| 186 | 
            +
                  "rstrip": false,
         | 
| 187 | 
            +
                  "single_word": false,
         | 
| 188 | 
            +
                  "special": true
         | 
| 189 | 
            +
                },
         | 
| 190 | 
            +
                "151666": {
         | 
| 191 | 
            +
                  "content": "</img>",
         | 
| 192 | 
            +
                  "lstrip": false,
         | 
| 193 | 
            +
                  "normalized": false,
         | 
| 194 | 
            +
                  "rstrip": false,
         | 
| 195 | 
            +
                  "single_word": false,
         | 
| 196 | 
            +
                  "special": true
         | 
| 197 | 
            +
                },
         | 
| 198 | 
            +
                "151667": {
         | 
| 199 | 
            +
                  "content": "<IMG_CONTEXT>",
         | 
| 200 | 
            +
                  "lstrip": false,
         | 
| 201 | 
            +
                  "normalized": false,
         | 
| 202 | 
            +
                  "rstrip": false,
         | 
| 203 | 
            +
                  "single_word": false,
         | 
| 204 | 
            +
                  "special": true
         | 
| 205 | 
            +
                },
         | 
| 206 | 
            +
                "151668": {
         | 
| 207 | 
            +
                  "content": "<quad>",
         | 
| 208 | 
            +
                  "lstrip": false,
         | 
| 209 | 
            +
                  "normalized": false,
         | 
| 210 | 
            +
                  "rstrip": false,
         | 
| 211 | 
            +
                  "single_word": false,
         | 
| 212 | 
            +
                  "special": true
         | 
| 213 | 
            +
                },
         | 
| 214 | 
            +
                "151669": {
         | 
| 215 | 
            +
                  "content": "</quad>",
         | 
| 216 | 
            +
                  "lstrip": false,
         | 
| 217 | 
            +
                  "normalized": false,
         | 
| 218 | 
            +
                  "rstrip": false,
         | 
| 219 | 
            +
                  "single_word": false,
         | 
| 220 | 
            +
                  "special": true
         | 
| 221 | 
            +
                },
         | 
| 222 | 
            +
                "151670": {
         | 
| 223 | 
            +
                  "content": "<ref>",
         | 
| 224 | 
            +
                  "lstrip": false,
         | 
| 225 | 
            +
                  "normalized": false,
         | 
| 226 | 
            +
                  "rstrip": false,
         | 
| 227 | 
            +
                  "single_word": false,
         | 
| 228 | 
            +
                  "special": true
         | 
| 229 | 
            +
                },
         | 
| 230 | 
            +
                "151671": {
         | 
| 231 | 
            +
                  "content": "</ref>",
         | 
| 232 | 
            +
                  "lstrip": false,
         | 
| 233 | 
            +
                  "normalized": false,
         | 
| 234 | 
            +
                  "rstrip": false,
         | 
| 235 | 
            +
                  "single_word": false,
         | 
| 236 | 
            +
                  "special": true
         | 
| 237 | 
            +
                },
         | 
| 238 | 
            +
                "151672": {
         | 
| 239 | 
            +
                  "content": "<box>",
         | 
| 240 | 
            +
                  "lstrip": false,
         | 
| 241 | 
            +
                  "normalized": false,
         | 
| 242 | 
            +
                  "rstrip": false,
         | 
| 243 | 
            +
                  "single_word": false,
         | 
| 244 | 
            +
                  "special": true
         | 
| 245 | 
            +
                },
         | 
| 246 | 
            +
                "151673": {
         | 
| 247 | 
            +
                  "content": "</box>",
         | 
| 248 | 
            +
                  "lstrip": false,
         | 
| 249 | 
            +
                  "normalized": false,
         | 
| 250 | 
            +
                  "rstrip": false,
         | 
| 251 | 
            +
                  "single_word": false,
         | 
| 252 | 
            +
                  "special": true
         | 
| 253 | 
            +
                }
         | 
| 254 | 
            +
              },
         | 
| 255 | 
            +
              "additional_special_tokens": [
         | 
| 256 | 
            +
                "<|im_start|>",
         | 
| 257 | 
            +
                "<|im_end|>",
         | 
| 258 | 
            +
                "<|object_ref_start|>",
         | 
| 259 | 
            +
                "<|object_ref_end|>",
         | 
| 260 | 
            +
                "<|box_start|>",
         | 
| 261 | 
            +
                "<|box_end|>",
         | 
| 262 | 
            +
                "<|quad_start|>",
         | 
| 263 | 
            +
                "<|quad_end|>",
         | 
| 264 | 
            +
                "<|vision_start|>",
         | 
| 265 | 
            +
                "<|vision_end|>",
         | 
| 266 | 
            +
                "<|vision_pad|>",
         | 
| 267 | 
            +
                "<|image_pad|>",
         | 
| 268 | 
            +
                "<|video_pad|>"
         | 
| 269 | 
            +
              ],
         | 
| 270 | 
            +
              "bos_token": null,
         | 
| 271 | 
            +
              "chat_template": "{%- if tools %}\n    {{- '<|im_start|>system\\n' }}\n    {%- if messages[0]['role'] == 'system' %}\n        {{- messages[0]['content'] }}\n    {%- else %}\n        {{- 'You are Qwen, created by Alibaba Cloud. You are a helpful assistant.' }}\n    {%- endif %}\n    {{- \"\\n\\n# Tools\\n\\nYou may call one or more functions to assist with the user query.\\n\\nYou are provided with function signatures within <tools></tools> XML tags:\\n<tools>\" }}\n    {%- for tool in tools %}\n        {{- \"\\n\" }}\n        {{- tool | tojson }}\n    {%- endfor %}\n    {{- \"\\n</tools>\\n\\nFor each function call, return a json object with function name and arguments within <tool_call></tool_call> XML tags:\\n<tool_call>\\n{\\\"name\\\": <function-name>, \\\"arguments\\\": <args-json-object>}\\n</tool_call><|im_end|>\\n\" }}\n{%- else %}\n    {%- if messages[0]['role'] == 'system' %}\n        {{- '<|im_start|>system\\n' + messages[0]['content'] + '<|im_end|>\\n' }}\n    {%- else %}\n        {{- '<|im_start|>system\\nYou are Qwen, created by Alibaba Cloud. You are a helpful assistant.<|im_end|>\\n' }}\n    {%- endif %}\n{%- endif %}\n{%- for message in messages %}\n    {%- if (message.role == \"user\") or (message.role == \"system\" and not loop.first) or (message.role == \"assistant\" and not message.tool_calls) %}\n        {{- '<|im_start|>' + message.role + '\\n' + message.content + '<|im_end|>' + '\\n' }}\n    {%- elif message.role == \"assistant\" %}\n        {{- '<|im_start|>' + message.role }}\n        {%- if message.content %}\n            {{- '\\n' + message.content }}\n        {%- endif %}\n        {%- for tool_call in message.tool_calls %}\n            {%- if tool_call.function is defined %}\n                {%- set tool_call = tool_call.function %}\n            {%- endif %}\n            {{- '\\n<tool_call>\\n{\"name\": \"' }}\n            {{- tool_call.name }}\n            {{- '\", \"arguments\": ' }}\n            {{- tool_call.arguments | tojson }}\n            {{- '}\\n</tool_call>' }}\n        {%- endfor %}\n        {{- '<|im_end|>\\n' }}\n    {%- elif message.role == \"tool\" %}\n        {%- if (loop.index0 == 0) or (messages[loop.index0 - 1].role != \"tool\") %}\n            {{- '<|im_start|>user' }}\n        {%- endif %}\n        {{- '\\n<tool_response>\\n' }}\n        {{- message.content }}\n        {{- '\\n</tool_response>' }}\n        {%- if loop.last or (messages[loop.index0 + 1].role != \"tool\") %}\n            {{- '<|im_end|>\\n' }}\n        {%- endif %}\n    {%- endif %}\n{%- endfor %}\n{%- if add_generation_prompt %}\n    {{- '<|im_start|>assistant\\n' }}\n{%- endif %}\n",
         | 
| 272 | 
            +
              "clean_up_tokenization_spaces": false,
         | 
| 273 | 
            +
              "eos_token": "<|im_end|>",
         | 
| 274 | 
            +
              "errors": "replace",
         | 
| 275 | 
            +
              "model_max_length": 1000000,
         | 
| 276 | 
            +
              "pad_token": "<|endoftext|>",
         | 
| 277 | 
            +
              "split_special_tokens": false,
         | 
| 278 | 
            +
              "tokenizer_class": "Qwen2Tokenizer",
         | 
| 279 | 
            +
              "unk_token": null
         | 
| 280 | 
            +
            }
         | 
    	
        vocab.json
    ADDED
    
    | The diff for this file is too large to render. 
		See raw diff | 
|  | 

