Upload folder using huggingface_hub
Browse files
README.md
CHANGED
|
@@ -576,7 +576,7 @@ To deploy InternVL2 as an API, please configure the chat template config first.
|
|
| 576 |
LMDeploy's `api_server` enables models to be easily packed into services with a single command. The provided RESTful APIs are compatible with OpenAI's interfaces. Below are an example of service startup:
|
| 577 |
|
| 578 |
```shell
|
| 579 |
-
lmdeploy serve api_server OpenGVLab/InternVL2-2B --
|
| 580 |
```
|
| 581 |
|
| 582 |
To use the OpenAI-style interface, you need to install OpenAI:
|
|
@@ -593,7 +593,7 @@ from openai import OpenAI
|
|
| 593 |
client = OpenAI(api_key='YOUR_API_KEY', base_url='http://0.0.0.0:23333/v1')
|
| 594 |
model_name = client.models.list().data[0].id
|
| 595 |
response = client.chat.completions.create(
|
| 596 |
-
model=
|
| 597 |
messages=[{
|
| 598 |
'role':
|
| 599 |
'user',
|
|
@@ -872,7 +872,7 @@ print(sess.response.text)
|
|
| 872 |
LMDeploy 的 `api_server` 使模型能够通过一个命令轻松打包成服务。提供的 RESTful API 与 OpenAI 的接口兼容。以下是服务启动的示例:
|
| 873 |
|
| 874 |
```shell
|
| 875 |
-
lmdeploy serve api_server OpenGVLab/InternVL2-2B
|
| 876 |
```
|
| 877 |
|
| 878 |
为了使用OpenAI风格的API接口,您需要安装OpenAI:
|
|
@@ -889,7 +889,7 @@ from openai import OpenAI
|
|
| 889 |
client = OpenAI(api_key='YOUR_API_KEY', base_url='http://0.0.0.0:23333/v1')
|
| 890 |
model_name = client.models.list().data[0].id
|
| 891 |
response = client.chat.completions.create(
|
| 892 |
-
model=
|
| 893 |
messages=[{
|
| 894 |
'role':
|
| 895 |
'user',
|
|
|
|
| 576 |
LMDeploy's `api_server` enables models to be easily packed into services with a single command. The provided RESTful APIs are compatible with OpenAI's interfaces. Below are an example of service startup:
|
| 577 |
|
| 578 |
```shell
|
| 579 |
+
lmdeploy serve api_server OpenGVLab/InternVL2-2B --backend turbomind --server-port 23333 --chat-template chat_template.json
|
| 580 |
```
|
| 581 |
|
| 582 |
To use the OpenAI-style interface, you need to install OpenAI:
|
|
|
|
| 593 |
client = OpenAI(api_key='YOUR_API_KEY', base_url='http://0.0.0.0:23333/v1')
|
| 594 |
model_name = client.models.list().data[0].id
|
| 595 |
response = client.chat.completions.create(
|
| 596 |
+
model=model_name,
|
| 597 |
messages=[{
|
| 598 |
'role':
|
| 599 |
'user',
|
|
|
|
| 872 |
LMDeploy 的 `api_server` 使模型能够通过一个命令轻松打包成服务。提供的 RESTful API 与 OpenAI 的接口兼容。以下是服务启动的示例:
|
| 873 |
|
| 874 |
```shell
|
| 875 |
+
lmdeploy serve api_server OpenGVLab/InternVL2-2B --backend turbomind --server-port 23333 --chat-template chat_template.json
|
| 876 |
```
|
| 877 |
|
| 878 |
为了使用OpenAI风格的API接口,您需要安装OpenAI:
|
|
|
|
| 889 |
client = OpenAI(api_key='YOUR_API_KEY', base_url='http://0.0.0.0:23333/v1')
|
| 890 |
model_name = client.models.list().data[0].id
|
| 891 |
response = client.chat.completions.create(
|
| 892 |
+
model=model_name,
|
| 893 |
messages=[{
|
| 894 |
'role':
|
| 895 |
'user',
|