Upload folder using huggingface_hub
Browse files
README.md
CHANGED
|
@@ -3,11 +3,19 @@ license: mit
|
|
| 3 |
pipeline_tag: image-text-to-text
|
| 4 |
---
|
| 5 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 6 |
<div align="center">
|
| 7 |
<img src="https://raw.githubusercontent.com/InternLM/lmdeploy/0be9e7ab6fe9a066cfb0a09d0e0c8d2e28435e58/resources/lmdeploy-logo.svg" width="450"/>
|
| 8 |
</div>
|
| 9 |
|
| 10 |
-
|
| 11 |
|
| 12 |
LMDeploy adopts [AWQ](https://arxiv.org/abs/2306.00978) algorithm for 4bit weight-only quantization. By developed the high-performance cuda kernel, the 4bit quantized model inference achieves up to 2.4x faster than FP16.
|
| 13 |
|
|
@@ -34,7 +42,7 @@ This article comprises the following sections:
|
|
| 34 |
|
| 35 |
<!-- tocstop -->
|
| 36 |
|
| 37 |
-
|
| 38 |
|
| 39 |
Trying the following codes, you can perform the batched offline inference with the quantized model:
|
| 40 |
|
|
@@ -56,7 +64,7 @@ print(response.text)
|
|
| 56 |
|
| 57 |
For more information about the pipeline parameters, please refer to [here](https://github.com/InternLM/lmdeploy/blob/main/docs/en/inference/pipeline.md).
|
| 58 |
|
| 59 |
-
|
| 60 |
|
| 61 |
To deploy InternVL2 as an API, please configure the chat template config first. Create the following JSON file `chat_template.json`.
|
| 62 |
|
|
|
|
| 3 |
pipeline_tag: image-text-to-text
|
| 4 |
---
|
| 5 |
|
| 6 |
+
# InternVL2-2B-AWQ
|
| 7 |
+
|
| 8 |
+
[\[📂 GitHub\]](https://github.com/OpenGVLab/InternVL) [\[🆕 Blog\]](https://internvl.github.io/blog/) [\[📜 InternVL 1.0 Paper\]](https://arxiv.org/abs/2312.14238) [\[📜 InternVL 1.5 Report\]](https://arxiv.org/abs/2404.16821)
|
| 9 |
+
|
| 10 |
+
[\[🗨️ Chat Demo\]](https://internvl.opengvlab.com/) [\[🤗 HF Demo\]](https://huggingface.co/spaces/OpenGVLab/InternVL) [\[🚀 Quick Start\]](#quick-start) [\[📖 中文解读\]](https://zhuanlan.zhihu.com/p/706547971) \[🌟 [魔搭社区](https://modelscope.cn/organization/OpenGVLab) | [教程](https://mp.weixin.qq.com/s/OUaVLkxlk1zhFb1cvMCFjg) \]
|
| 11 |
+
|
| 12 |
+
## Introduction
|
| 13 |
+
|
| 14 |
<div align="center">
|
| 15 |
<img src="https://raw.githubusercontent.com/InternLM/lmdeploy/0be9e7ab6fe9a066cfb0a09d0e0c8d2e28435e58/resources/lmdeploy-logo.svg" width="450"/>
|
| 16 |
</div>
|
| 17 |
|
| 18 |
+
### INT4 Weight-only Quantization and Deployment (W4A16)
|
| 19 |
|
| 20 |
LMDeploy adopts [AWQ](https://arxiv.org/abs/2306.00978) algorithm for 4bit weight-only quantization. By developed the high-performance cuda kernel, the 4bit quantized model inference achieves up to 2.4x faster than FP16.
|
| 21 |
|
|
|
|
| 42 |
|
| 43 |
<!-- tocstop -->
|
| 44 |
|
| 45 |
+
### Inference
|
| 46 |
|
| 47 |
Trying the following codes, you can perform the batched offline inference with the quantized model:
|
| 48 |
|
|
|
|
| 64 |
|
| 65 |
For more information about the pipeline parameters, please refer to [here](https://github.com/InternLM/lmdeploy/blob/main/docs/en/inference/pipeline.md).
|
| 66 |
|
| 67 |
+
### Service
|
| 68 |
|
| 69 |
To deploy InternVL2 as an API, please configure the chat template config first. Create the following JSON file `chat_template.json`.
|
| 70 |
|