|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | import warnings | 
					
						
						|  | from typing import Any, List, Optional, Tuple, Union | 
					
						
						|  |  | 
					
						
						|  | import torch.utils.checkpoint | 
					
						
						|  | from peft import LoraConfig, get_peft_model | 
					
						
						|  | from torch import nn | 
					
						
						|  | from torch.nn import CrossEntropyLoss | 
					
						
						|  | from transformers import (AutoModel, GenerationConfig, LlamaForCausalLM, | 
					
						
						|  | LlamaTokenizer) | 
					
						
						|  | from transformers.modeling_outputs import CausalLMOutputWithPast | 
					
						
						|  | from transformers.modeling_utils import PreTrainedModel | 
					
						
						|  | from transformers.utils import ModelOutput, logging | 
					
						
						|  |  | 
					
						
						|  | from .configuration_internvl_chat import InternVLChatConfig | 
					
						
						|  | from .modeling_intern_vit import InternVisionModel | 
					
						
						|  | from .modeling_internlm2 import InternLM2ForCausalLM | 
					
						
						|  |  | 
					
						
						|  | logger = logging.get_logger(__name__) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | def window_partition(x, window_size): | 
					
						
						|  | """ | 
					
						
						|  | Args: | 
					
						
						|  | x: (B, C, H, W) | 
					
						
						|  | window_size (int): window size, assuming square window | 
					
						
						|  |  | 
					
						
						|  | Returns: | 
					
						
						|  | windows: (num_windows*B, C, window_size, window_size) | 
					
						
						|  | """ | 
					
						
						|  | B, C, H, W = x.shape | 
					
						
						|  | assert H % window_size == 0 and W % window_size == 0, 'H and W must be divisible by window_size' | 
					
						
						|  |  | 
					
						
						|  | x = x.view(B, C, H // window_size, window_size, W // window_size, window_size) | 
					
						
						|  | windows = x.permute(0, 2, 4, 1, 3, 5).contiguous().view(-1, C, window_size, window_size) | 
					
						
						|  | return windows | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | def window_reverse(windows, window_size, H, W): | 
					
						
						|  | """ | 
					
						
						|  | Args: | 
					
						
						|  | windows: (num_windows*B, window_size, window_size, C) | 
					
						
						|  | window_size (int): Window size | 
					
						
						|  | H (int): Height of image | 
					
						
						|  | W (int): Width of image | 
					
						
						|  |  | 
					
						
						|  | Returns: | 
					
						
						|  | x: (B, H * W, C) | 
					
						
						|  | """ | 
					
						
						|  | B = int(windows.shape[0] / (H * W / window_size / window_size)) | 
					
						
						|  | x = windows.view(B, H // window_size, W // window_size, window_size, window_size, -1) | 
					
						
						|  | x = x.permute(0, 1, 3, 2, 4, 5).contiguous().view(B, H * W, -1) | 
					
						
						|  | return x | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | class InternVLChatModel(PreTrainedModel): | 
					
						
						|  | config_class = InternVLChatConfig | 
					
						
						|  | main_input_name = 'pixel_values' | 
					
						
						|  | _no_split_modules = ['InternVisionEncoderLayer', 'LlamaDecoderLayer', 'LlamaForCausalLM'] | 
					
						
						|  |  | 
					
						
						|  | def __init__(self, config: InternVLChatConfig, vision_model=None, language_model=None): | 
					
						
						|  | super().__init__(config) | 
					
						
						|  |  | 
					
						
						|  | image_size = config.force_image_size or config.vision_config.image_size | 
					
						
						|  | patch_size = config.vision_config.patch_size | 
					
						
						|  | self.patch_size = patch_size | 
					
						
						|  | self.select_layer = config.select_layer | 
					
						
						|  | self.template = config.template | 
					
						
						|  | self.num_image_token = int((image_size // patch_size) ** 2 * (config.downsample_ratio ** 2)) | 
					
						
						|  | self.downsample_ratio = config.downsample_ratio | 
					
						
						|  | self.image_fold = config.image_fold | 
					
						
						|  | self.ps_version = config.ps_version | 
					
						
						|  |  | 
					
						
						|  | logger.info(f'num_image_token: {self.num_image_token}') | 
					
						
						|  | logger.info(f'ps_version: {self.ps_version}') | 
					
						
						|  | if vision_model is not None: | 
					
						
						|  | self.vision_model = vision_model | 
					
						
						|  | else: | 
					
						
						|  | self.vision_model = InternVisionModel(config.vision_config) | 
					
						
						|  | if language_model is not None: | 
					
						
						|  | self.language_model = language_model | 
					
						
						|  | else: | 
					
						
						|  | if config.llm_config.architectures[0] == 'LlamaForCausalLM': | 
					
						
						|  | self.language_model = LlamaForCausalLM(config.llm_config) | 
					
						
						|  | elif config.llm_config.architectures[0] == 'InternLM2ForCausalLM': | 
					
						
						|  | self.language_model = InternLM2ForCausalLM(config.llm_config) | 
					
						
						|  | else: | 
					
						
						|  | raise NotImplementedError(f'{config.llm_config.architectures[0]} is not implemented.') | 
					
						
						|  |  | 
					
						
						|  | vit_hidden_size = config.vision_config.hidden_size | 
					
						
						|  | llm_hidden_size = config.llm_config.hidden_size | 
					
						
						|  |  | 
					
						
						|  | self.mlp1 = nn.Sequential( | 
					
						
						|  | nn.LayerNorm(vit_hidden_size * int(1 / self.downsample_ratio) ** 2), | 
					
						
						|  | nn.Linear(vit_hidden_size * int(1 / self.downsample_ratio) ** 2, llm_hidden_size), | 
					
						
						|  | nn.GELU(), | 
					
						
						|  | nn.Linear(llm_hidden_size, llm_hidden_size) | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | self.img_context_token_id = None | 
					
						
						|  | self.neftune_alpha = None | 
					
						
						|  |  | 
					
						
						|  | if config.use_backbone_lora: | 
					
						
						|  | self.wrap_backbone_lora(r=config.use_backbone_lora, lora_alpha=2 * config.use_backbone_lora) | 
					
						
						|  |  | 
					
						
						|  | if config.use_llm_lora: | 
					
						
						|  | self.wrap_llm_lora(r=config.use_llm_lora, lora_alpha=2 * config.use_llm_lora) | 
					
						
						|  |  | 
					
						
						|  | def wrap_backbone_lora(self, r=128, lora_alpha=256, lora_dropout=0.05): | 
					
						
						|  | lora_config = LoraConfig( | 
					
						
						|  | r=r, | 
					
						
						|  | target_modules=['attn.qkv', 'attn.proj', 'mlp.fc1', 'mlp.fc2'], | 
					
						
						|  | lora_alpha=lora_alpha, | 
					
						
						|  | lora_dropout=lora_dropout, | 
					
						
						|  | ) | 
					
						
						|  | self.vision_model = get_peft_model(self.vision_model, lora_config) | 
					
						
						|  | self.vision_model.print_trainable_parameters() | 
					
						
						|  |  | 
					
						
						|  | def wrap_llm_lora(self, r=128, lora_alpha=256, lora_dropout=0.05): | 
					
						
						|  | lora_config = LoraConfig( | 
					
						
						|  | r=r, | 
					
						
						|  | target_modules=['self_attn.q_proj', 'self_attn.k_proj', 'self_attn.v_proj', 'self_attn.o_proj', | 
					
						
						|  | 'mlp.gate_proj', 'mlp.down_proj', 'mlp.up_proj'], | 
					
						
						|  | lora_alpha=lora_alpha, | 
					
						
						|  | lora_dropout=lora_dropout, | 
					
						
						|  | task_type='CAUSAL_LM' | 
					
						
						|  | ) | 
					
						
						|  | self.language_model = get_peft_model(self.language_model, lora_config) | 
					
						
						|  | self.language_model.enable_input_require_grads() | 
					
						
						|  | self.language_model.print_trainable_parameters() | 
					
						
						|  |  | 
					
						
						|  | def forward( | 
					
						
						|  | self, | 
					
						
						|  | pixel_values: torch.FloatTensor, | 
					
						
						|  | input_ids: torch.LongTensor = None, | 
					
						
						|  | attention_mask: Optional[torch.Tensor] = None, | 
					
						
						|  | position_ids: Optional[torch.LongTensor] = None, | 
					
						
						|  | image_flags: Optional[torch.LongTensor] = None, | 
					
						
						|  | past_key_values: Optional[List[torch.FloatTensor]] = None, | 
					
						
						|  | labels: Optional[torch.LongTensor] = None, | 
					
						
						|  | use_cache: Optional[bool] = None, | 
					
						
						|  | output_attentions: Optional[bool] = None, | 
					
						
						|  | output_hidden_states: Optional[bool] = None, | 
					
						
						|  | return_dict: Optional[bool] = None, | 
					
						
						|  | ) -> Union[Tuple, CausalLMOutputWithPast]: | 
					
						
						|  | return_dict = return_dict if return_dict is not None else self.config.use_return_dict | 
					
						
						|  |  | 
					
						
						|  | image_flags = image_flags.squeeze(-1) | 
					
						
						|  | input_embeds = self.language_model.get_input_embeddings()(input_ids) | 
					
						
						|  |  | 
					
						
						|  | vit_embeds = self.extract_feature(pixel_values) | 
					
						
						|  | vit_embeds = vit_embeds[image_flags == 1] | 
					
						
						|  | vit_batch_size = pixel_values.shape[0] | 
					
						
						|  |  | 
					
						
						|  | B, N, C = input_embeds.shape | 
					
						
						|  | input_embeds = input_embeds.reshape(B * N, C) | 
					
						
						|  |  | 
					
						
						|  | if torch.distributed.get_rank() == 0: | 
					
						
						|  | print(f'dynamic ViT batch size: {vit_batch_size}, images per sample: {vit_batch_size / B}, dynamic token length: {N}') | 
					
						
						|  |  | 
					
						
						|  | input_ids = input_ids.reshape(B * N) | 
					
						
						|  | selected = (input_ids == self.img_context_token_id) | 
					
						
						|  | try: | 
					
						
						|  | input_embeds[selected] = input_embeds[selected] * 0.0 + vit_embeds.reshape(-1, C) | 
					
						
						|  | except Exception as e: | 
					
						
						|  | vit_embeds = vit_embeds.reshape(-1, C) | 
					
						
						|  | print(f'warning: {e}, input_embeds[selected].shape={input_embeds[selected].shape}, ' | 
					
						
						|  | f'vit_embeds.shape={vit_embeds.shape}') | 
					
						
						|  | n_token = selected.sum() | 
					
						
						|  | input_embeds[selected] = input_embeds[selected] * 0.0 + vit_embeds[:n_token] | 
					
						
						|  |  | 
					
						
						|  | input_embeds = input_embeds.reshape(B, N, C) | 
					
						
						|  |  | 
					
						
						|  | outputs = self.language_model( | 
					
						
						|  | inputs_embeds=input_embeds, | 
					
						
						|  | attention_mask=attention_mask, | 
					
						
						|  | position_ids=position_ids, | 
					
						
						|  | past_key_values=past_key_values, | 
					
						
						|  | use_cache=use_cache, | 
					
						
						|  | output_attentions=output_attentions, | 
					
						
						|  | output_hidden_states=output_hidden_states, | 
					
						
						|  | return_dict=return_dict, | 
					
						
						|  | ) | 
					
						
						|  | logits = outputs.logits | 
					
						
						|  |  | 
					
						
						|  | loss = None | 
					
						
						|  | if labels is not None: | 
					
						
						|  |  | 
					
						
						|  | shift_logits = logits[..., :-1, :].contiguous() | 
					
						
						|  | shift_labels = labels[..., 1:].contiguous() | 
					
						
						|  |  | 
					
						
						|  | loss_fct = CrossEntropyLoss() | 
					
						
						|  | shift_logits = shift_logits.view(-1, self.language_model.config.vocab_size) | 
					
						
						|  | shift_labels = shift_labels.view(-1) | 
					
						
						|  |  | 
					
						
						|  | shift_labels = shift_labels.to(shift_logits.device) | 
					
						
						|  | loss = loss_fct(shift_logits, shift_labels) | 
					
						
						|  |  | 
					
						
						|  | if not return_dict: | 
					
						
						|  | output = (logits,) + outputs[1:] | 
					
						
						|  | return (loss,) + output if loss is not None else output | 
					
						
						|  |  | 
					
						
						|  | return CausalLMOutputWithPast( | 
					
						
						|  | loss=loss, | 
					
						
						|  | logits=logits, | 
					
						
						|  | past_key_values=outputs.past_key_values, | 
					
						
						|  | hidden_states=outputs.hidden_states, | 
					
						
						|  | attentions=outputs.attentions, | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | def pixel_shuffle(self, x, scale_factor=0.5): | 
					
						
						|  | n, w, h, c = x.size() | 
					
						
						|  |  | 
					
						
						|  | x = x.view(n, w, int(h * scale_factor), int(c / scale_factor)) | 
					
						
						|  |  | 
					
						
						|  | x = x.permute(0, 2, 1, 3).contiguous() | 
					
						
						|  |  | 
					
						
						|  | x = x.view(n, int(h * scale_factor), int(w * scale_factor), | 
					
						
						|  | int(c / (scale_factor * scale_factor))) | 
					
						
						|  | if self.ps_version == 'v1': | 
					
						
						|  | warnings.warn("In ps_version 'v1', the height and width have not been swapped back, " | 
					
						
						|  | 'which results in a transposed image.') | 
					
						
						|  | else: | 
					
						
						|  | x = x.permute(0, 2, 1, 3).contiguous() | 
					
						
						|  | return x | 
					
						
						|  |  | 
					
						
						|  | def noised_embed(self, vit_embeds, noise_alpha=5): | 
					
						
						|  | dims = torch.tensor(vit_embeds.size(1) * vit_embeds.size(2)) | 
					
						
						|  | mag_norm = noise_alpha / torch.sqrt(dims) | 
					
						
						|  | noise = torch.zeros_like(vit_embeds).uniform_(-mag_norm, mag_norm) | 
					
						
						|  | return vit_embeds + noise | 
					
						
						|  |  | 
					
						
						|  | def extract_feature(self, pixel_values): | 
					
						
						|  | if self.image_fold: | 
					
						
						|  | image_size = pixel_values.size(-1) | 
					
						
						|  | pixel_values = window_partition(pixel_values, window_size=image_size // self.image_fold) | 
					
						
						|  |  | 
					
						
						|  | if self.select_layer == -1: | 
					
						
						|  | vit_embeds = self.vision_model( | 
					
						
						|  | pixel_values=pixel_values, | 
					
						
						|  | output_hidden_states=False, | 
					
						
						|  | return_dict=True).last_hidden_state | 
					
						
						|  | else: | 
					
						
						|  | vit_embeds = self.vision_model( | 
					
						
						|  | pixel_values=pixel_values, | 
					
						
						|  | output_hidden_states=True, | 
					
						
						|  | return_dict=True).hidden_states[self.select_layer] | 
					
						
						|  | vit_embeds = vit_embeds[:, 1:, :] | 
					
						
						|  |  | 
					
						
						|  | if self.training and self.neftune_alpha is not None: | 
					
						
						|  | vit_embeds = self.noised_embed(vit_embeds, self.neftune_alpha) | 
					
						
						|  |  | 
					
						
						|  | if self.image_fold: | 
					
						
						|  | vit_embeds = window_reverse(vit_embeds, window_size=image_size // (self.image_fold * self.patch_size), | 
					
						
						|  | H=image_size // self.patch_size, W=image_size // self.patch_size) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | h = w = int(vit_embeds.shape[1] ** 0.5) | 
					
						
						|  | vit_embeds = vit_embeds.reshape(vit_embeds.shape[0], h, w, -1) | 
					
						
						|  | vit_embeds = self.pixel_shuffle(vit_embeds, scale_factor=self.downsample_ratio) | 
					
						
						|  | vit_embeds = vit_embeds.reshape(vit_embeds.shape[0], -1, vit_embeds.shape[-1]) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | vit_embeds = self.mlp1(vit_embeds) | 
					
						
						|  | return vit_embeds | 
					
						
						|  |  | 
					
						
						|  | def chat(self, tokenizer, pixel_values, question, generation_config, history=None, return_history=False, | 
					
						
						|  | IMG_START_TOKEN='<img>', IMG_END_TOKEN='</img>', IMG_CONTEXT_TOKEN='<IMG_CONTEXT>'): | 
					
						
						|  |  | 
					
						
						|  | img_context_token_id = tokenizer.convert_tokens_to_ids(IMG_CONTEXT_TOKEN) | 
					
						
						|  | self.img_context_token_id = img_context_token_id | 
					
						
						|  | if tokenizer.convert_tokens_to_ids('<|im_end|>') != 0: | 
					
						
						|  | eos_token_id = tokenizer.convert_tokens_to_ids('<|im_end|>') | 
					
						
						|  | else: | 
					
						
						|  | eos_token_id = tokenizer.eos_token_id | 
					
						
						|  |  | 
					
						
						|  | from .conversation import get_conv_template | 
					
						
						|  |  | 
					
						
						|  | template = get_conv_template(self.template) | 
					
						
						|  | image_bs = pixel_values.shape[0] | 
					
						
						|  | print(f'dynamic ViT batch size: {image_bs}') | 
					
						
						|  | if history is None: | 
					
						
						|  | history = [] | 
					
						
						|  | image_tokens = IMG_START_TOKEN + IMG_CONTEXT_TOKEN * self.num_image_token * image_bs + IMG_END_TOKEN | 
					
						
						|  | question = image_tokens + '\n' + question | 
					
						
						|  | else: | 
					
						
						|  | for (old_question, old_answer) in history: | 
					
						
						|  | template.append_message(template.roles[0], old_question) | 
					
						
						|  | template.append_message(template.roles[1], old_answer) | 
					
						
						|  | template.append_message(template.roles[0], question) | 
					
						
						|  | template.append_message(template.roles[1], None) | 
					
						
						|  | query = template.get_prompt() | 
					
						
						|  | model_inputs = tokenizer(query, return_tensors='pt') | 
					
						
						|  | input_ids = model_inputs['input_ids'].cuda() | 
					
						
						|  | attention_mask = model_inputs['attention_mask'].cuda() | 
					
						
						|  | generation_config['eos_token_id'] = eos_token_id | 
					
						
						|  | generation_output = self.generate( | 
					
						
						|  | pixel_values=pixel_values, | 
					
						
						|  | input_ids=input_ids, | 
					
						
						|  | attention_mask=attention_mask, | 
					
						
						|  | **generation_config | 
					
						
						|  | ) | 
					
						
						|  | response = tokenizer.batch_decode(generation_output, skip_special_tokens=True)[0] | 
					
						
						|  | response = response.split('<|im_end|>')[0].strip() | 
					
						
						|  | history.append((question, response)) | 
					
						
						|  | if return_history: | 
					
						
						|  | return response, history | 
					
						
						|  | else: | 
					
						
						|  | query_to_print = query.replace(image_tokens, '<image>') | 
					
						
						|  | print(query_to_print, response) | 
					
						
						|  | return response | 
					
						
						|  | return response | 
					
						
						|  |  | 
					
						
						|  | @torch.no_grad() | 
					
						
						|  | def generate( | 
					
						
						|  | self, | 
					
						
						|  | pixel_values: Optional[torch.FloatTensor] = None, | 
					
						
						|  | input_ids: Optional[torch.FloatTensor] = None, | 
					
						
						|  | attention_mask: Optional[torch.LongTensor] = None, | 
					
						
						|  | visual_features: Optional[torch.FloatTensor] = None, | 
					
						
						|  | generation_config: Optional[GenerationConfig] = None, | 
					
						
						|  | output_hidden_states: Optional[bool] = None, | 
					
						
						|  | return_dict: Optional[bool] = None, | 
					
						
						|  | **generate_kwargs, | 
					
						
						|  | ) -> torch.LongTensor: | 
					
						
						|  |  | 
					
						
						|  | assert self.img_context_token_id is not None | 
					
						
						|  | if pixel_values is not None: | 
					
						
						|  | if visual_features is not None: | 
					
						
						|  | vit_embeds = visual_features | 
					
						
						|  | else: | 
					
						
						|  | vit_embeds = self.extract_feature(pixel_values) | 
					
						
						|  |  | 
					
						
						|  | input_embeds = self.language_model.get_input_embeddings()(input_ids) | 
					
						
						|  | B, N, C = input_embeds.shape | 
					
						
						|  | input_embeds = input_embeds.reshape(B * N, C) | 
					
						
						|  |  | 
					
						
						|  | input_ids = input_ids.reshape(B * N) | 
					
						
						|  | selected = (input_ids == self.img_context_token_id) | 
					
						
						|  | assert selected.sum() != 0 | 
					
						
						|  | input_embeds[selected] = vit_embeds.reshape(-1, C) | 
					
						
						|  |  | 
					
						
						|  | input_embeds = input_embeds.reshape(B, N, C) | 
					
						
						|  | else: | 
					
						
						|  | input_embeds = self.language_model.get_input_embeddings()(input_ids) | 
					
						
						|  |  | 
					
						
						|  | outputs = self.language_model.generate( | 
					
						
						|  | inputs_embeds=input_embeds, | 
					
						
						|  | attention_mask=attention_mask, | 
					
						
						|  | generation_config=generation_config, | 
					
						
						|  | output_hidden_states=output_hidden_states, | 
					
						
						|  | return_dict=return_dict, | 
					
						
						|  | use_cache=True, | 
					
						
						|  | **generate_kwargs, | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | return outputs | 
					
						
						|  |  |