Commit
·
27e0aca
1
Parent(s):
9d369ef
Create README.md
Browse files
README.md
ADDED
|
@@ -0,0 +1,56 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
---
|
| 2 |
+
language:
|
| 3 |
+
- en
|
| 4 |
+
tags:
|
| 5 |
+
- ResNet-50
|
| 6 |
+
---
|
| 7 |
+
|
| 8 |
+
# ResNet-50
|
| 9 |
+
|
| 10 |
+
## Model Description
|
| 11 |
+
|
| 12 |
+
ResNet-50 model from [Deep Residual Learning for Image Recognition](https://arxiv.org/abs/1512.03385) paper.
|
| 13 |
+
|
| 14 |
+
## Original implementation
|
| 15 |
+
|
| 16 |
+
Follow [this link](https://huggingface.co/microsoft/resnet-50) to see the original implementation.
|
| 17 |
+
|
| 18 |
+
# How to use
|
| 19 |
+
|
| 20 |
+
You can use the `base` model that returns `last_hidden_state`.
|
| 21 |
+
```python
|
| 22 |
+
from transformers import AutoFeatureExtractor
|
| 23 |
+
from onnxruntime import InferenceSession
|
| 24 |
+
from datasets import load_dataset
|
| 25 |
+
|
| 26 |
+
# load image
|
| 27 |
+
dataset = load_dataset("huggingface/cats-image")
|
| 28 |
+
image = dataset["test"]["image"][0]
|
| 29 |
+
|
| 30 |
+
# load model
|
| 31 |
+
feature_extractor = AutoFeatureExtractor.from_pretrained("microsoft/resnet-50")
|
| 32 |
+
session = InferenceSession("onnx/model.onnx")
|
| 33 |
+
|
| 34 |
+
# ONNX Runtime expects NumPy arrays as input
|
| 35 |
+
inputs = feature_extractor(image, return_tensors="np")
|
| 36 |
+
outputs = session.run(output_names=["last_hidden_state"], input_feed=dict(inputs))
|
| 37 |
+
```
|
| 38 |
+
|
| 39 |
+
Or you can use the model with classification head that returns `logits`.
|
| 40 |
+
```python
|
| 41 |
+
from transformers import AutoFeatureExtractor
|
| 42 |
+
from onnxruntime import InferenceSession
|
| 43 |
+
from datasets import load_dataset
|
| 44 |
+
|
| 45 |
+
# load image
|
| 46 |
+
dataset = load_dataset("huggingface/cats-image")
|
| 47 |
+
image = dataset["test"]["image"][0]
|
| 48 |
+
|
| 49 |
+
# load model
|
| 50 |
+
feature_extractor = AutoFeatureExtractor.from_pretrained("microsoft/resnet-50")
|
| 51 |
+
session = InferenceSession("onnx/model_cls.onnx")
|
| 52 |
+
|
| 53 |
+
# ONNX Runtime expects NumPy arrays as input
|
| 54 |
+
inputs = feature_extractor(image, return_tensors="np")
|
| 55 |
+
outputs = session.run(output_names=["logits"], input_feed=dict(inputs))
|
| 56 |
+
```
|