Upload modeling_intern_vit.py with huggingface_hub
Browse files- modeling_intern_vit.py +434 -0
modeling_intern_vit.py
ADDED
|
@@ -0,0 +1,434 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# --------------------------------------------------------
|
| 2 |
+
# InternVL
|
| 3 |
+
# Copyright (c) 2023 OpenGVLab
|
| 4 |
+
# Licensed under The MIT License [see LICENSE for details]
|
| 5 |
+
# --------------------------------------------------------
|
| 6 |
+
from typing import Optional, Tuple, Union
|
| 7 |
+
|
| 8 |
+
import torch
|
| 9 |
+
import torch.nn.functional as F
|
| 10 |
+
import torch.utils.checkpoint
|
| 11 |
+
from einops import rearrange
|
| 12 |
+
from timm.models.layers import DropPath
|
| 13 |
+
from torch import nn
|
| 14 |
+
from transformers.activations import ACT2FN
|
| 15 |
+
from transformers.modeling_outputs import (BaseModelOutput,
|
| 16 |
+
BaseModelOutputWithPooling)
|
| 17 |
+
from transformers.modeling_utils import PreTrainedModel
|
| 18 |
+
from transformers.utils import logging
|
| 19 |
+
|
| 20 |
+
from .configuration_intern_vit import InternVisionConfig
|
| 21 |
+
|
| 22 |
+
try:
|
| 23 |
+
try: # v1
|
| 24 |
+
from flash_attn.flash_attn_interface import \
|
| 25 |
+
flash_attn_unpadded_qkvpacked_func
|
| 26 |
+
except: # v2
|
| 27 |
+
from flash_attn.flash_attn_interface import \
|
| 28 |
+
flash_attn_varlen_qkvpacked_func as flash_attn_unpadded_qkvpacked_func
|
| 29 |
+
|
| 30 |
+
from flash_attn.bert_padding import pad_input, unpad_input
|
| 31 |
+
|
| 32 |
+
has_flash_attn = True
|
| 33 |
+
except:
|
| 34 |
+
print('FlashAttention is not installed.')
|
| 35 |
+
has_flash_attn = False
|
| 36 |
+
|
| 37 |
+
logger = logging.get_logger(__name__)
|
| 38 |
+
|
| 39 |
+
|
| 40 |
+
class FlashAttention(nn.Module):
|
| 41 |
+
"""Implement the scaled dot product attention with softmax.
|
| 42 |
+
Arguments
|
| 43 |
+
---------
|
| 44 |
+
softmax_scale: The temperature to use for the softmax attention.
|
| 45 |
+
(default: 1/sqrt(d_keys) where d_keys is computed at
|
| 46 |
+
runtime)
|
| 47 |
+
attention_dropout: The dropout rate to apply to the attention
|
| 48 |
+
(default: 0.0)
|
| 49 |
+
"""
|
| 50 |
+
|
| 51 |
+
def __init__(self, softmax_scale=None, attention_dropout=0.0, device=None, dtype=None):
|
| 52 |
+
super().__init__()
|
| 53 |
+
self.softmax_scale = softmax_scale
|
| 54 |
+
self.dropout_p = attention_dropout
|
| 55 |
+
|
| 56 |
+
def forward(self, qkv, key_padding_mask=None, causal=False, cu_seqlens=None,
|
| 57 |
+
max_s=None, need_weights=False):
|
| 58 |
+
"""Implements the multihead softmax attention.
|
| 59 |
+
Arguments
|
| 60 |
+
---------
|
| 61 |
+
qkv: The tensor containing the query, key, and value. (B, S, 3, H, D) if key_padding_mask is None
|
| 62 |
+
if unpadded: (nnz, 3, h, d)
|
| 63 |
+
key_padding_mask: a bool tensor of shape (B, S)
|
| 64 |
+
"""
|
| 65 |
+
assert not need_weights
|
| 66 |
+
assert qkv.dtype in [torch.float16, torch.bfloat16]
|
| 67 |
+
assert qkv.is_cuda
|
| 68 |
+
|
| 69 |
+
if cu_seqlens is None:
|
| 70 |
+
batch_size = qkv.shape[0]
|
| 71 |
+
seqlen = qkv.shape[1]
|
| 72 |
+
if key_padding_mask is None:
|
| 73 |
+
qkv = rearrange(qkv, 'b s ... -> (b s) ...')
|
| 74 |
+
max_s = seqlen
|
| 75 |
+
cu_seqlens = torch.arange(0, (batch_size + 1) * seqlen, step=seqlen, dtype=torch.int32,
|
| 76 |
+
device=qkv.device)
|
| 77 |
+
output = flash_attn_unpadded_qkvpacked_func(
|
| 78 |
+
qkv, cu_seqlens, max_s, self.dropout_p if self.training else 0.0,
|
| 79 |
+
softmax_scale=self.softmax_scale, causal=causal
|
| 80 |
+
)
|
| 81 |
+
output = rearrange(output, '(b s) ... -> b s ...', b=batch_size)
|
| 82 |
+
else:
|
| 83 |
+
nheads = qkv.shape[-2]
|
| 84 |
+
x = rearrange(qkv, 'b s three h d -> b s (three h d)')
|
| 85 |
+
x_unpad, indices, cu_seqlens, max_s = unpad_input(x, key_padding_mask)
|
| 86 |
+
x_unpad = rearrange(x_unpad, 'nnz (three h d) -> nnz three h d', three=3, h=nheads)
|
| 87 |
+
output_unpad = flash_attn_unpadded_qkvpacked_func(
|
| 88 |
+
x_unpad, cu_seqlens, max_s, self.dropout_p if self.training else 0.0,
|
| 89 |
+
softmax_scale=self.softmax_scale, causal=causal
|
| 90 |
+
)
|
| 91 |
+
output = rearrange(pad_input(rearrange(output_unpad, 'nnz h d -> nnz (h d)'),
|
| 92 |
+
indices, batch_size, seqlen),
|
| 93 |
+
'b s (h d) -> b s h d', h=nheads)
|
| 94 |
+
else:
|
| 95 |
+
assert max_s is not None
|
| 96 |
+
output = flash_attn_unpadded_qkvpacked_func(
|
| 97 |
+
qkv, cu_seqlens, max_s, self.dropout_p if self.training else 0.0,
|
| 98 |
+
softmax_scale=self.softmax_scale, causal=causal
|
| 99 |
+
)
|
| 100 |
+
|
| 101 |
+
return output, None
|
| 102 |
+
|
| 103 |
+
|
| 104 |
+
class InternRMSNorm(nn.Module):
|
| 105 |
+
def __init__(self, hidden_size, eps=1e-6):
|
| 106 |
+
super().__init__()
|
| 107 |
+
self.weight = nn.Parameter(torch.ones(hidden_size))
|
| 108 |
+
self.variance_epsilon = eps
|
| 109 |
+
|
| 110 |
+
def forward(self, hidden_states):
|
| 111 |
+
input_dtype = hidden_states.dtype
|
| 112 |
+
hidden_states = hidden_states.to(torch.float32)
|
| 113 |
+
variance = hidden_states.pow(2).mean(-1, keepdim=True)
|
| 114 |
+
hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon)
|
| 115 |
+
return self.weight * hidden_states.to(input_dtype)
|
| 116 |
+
|
| 117 |
+
|
| 118 |
+
try:
|
| 119 |
+
from apex.normalization import FusedRMSNorm
|
| 120 |
+
|
| 121 |
+
InternRMSNorm = FusedRMSNorm # noqa
|
| 122 |
+
|
| 123 |
+
logger.info('Discovered apex.normalization.FusedRMSNorm - will use it instead of InternRMSNorm')
|
| 124 |
+
except ImportError:
|
| 125 |
+
# using the normal InternRMSNorm
|
| 126 |
+
pass
|
| 127 |
+
except Exception:
|
| 128 |
+
logger.warning('discovered apex but it failed to load, falling back to InternRMSNorm')
|
| 129 |
+
pass
|
| 130 |
+
|
| 131 |
+
|
| 132 |
+
NORM2FN = {
|
| 133 |
+
'rms_norm': InternRMSNorm,
|
| 134 |
+
'layer_norm': nn.LayerNorm,
|
| 135 |
+
}
|
| 136 |
+
|
| 137 |
+
|
| 138 |
+
class InternVisionEmbeddings(nn.Module):
|
| 139 |
+
def __init__(self, config: InternVisionConfig):
|
| 140 |
+
super().__init__()
|
| 141 |
+
self.config = config
|
| 142 |
+
self.embed_dim = config.hidden_size
|
| 143 |
+
self.image_size = config.image_size
|
| 144 |
+
self.patch_size = config.patch_size
|
| 145 |
+
|
| 146 |
+
self.class_embedding = nn.Parameter(
|
| 147 |
+
torch.randn(1, 1, self.embed_dim),
|
| 148 |
+
)
|
| 149 |
+
|
| 150 |
+
self.patch_embedding = nn.Conv2d(
|
| 151 |
+
in_channels=3, out_channels=self.embed_dim, kernel_size=self.patch_size, stride=self.patch_size
|
| 152 |
+
)
|
| 153 |
+
|
| 154 |
+
self.num_patches = (self.image_size // self.patch_size) ** 2
|
| 155 |
+
self.num_positions = self.num_patches + 1
|
| 156 |
+
|
| 157 |
+
self.position_embedding = nn.Parameter(torch.randn(1, self.num_positions, self.embed_dim))
|
| 158 |
+
|
| 159 |
+
def _get_pos_embed(self, pos_embed, H, W):
|
| 160 |
+
target_dtype = pos_embed.dtype
|
| 161 |
+
pos_embed = pos_embed.float().reshape(
|
| 162 |
+
1, self.image_size // self.patch_size, self.image_size // self.patch_size, -1).permute(0, 3, 1, 2)
|
| 163 |
+
pos_embed = F.interpolate(pos_embed, size=(H, W), mode='bicubic', align_corners=False). \
|
| 164 |
+
reshape(1, -1, H * W).permute(0, 2, 1).to(target_dtype)
|
| 165 |
+
return pos_embed
|
| 166 |
+
|
| 167 |
+
def forward(self, pixel_values: torch.FloatTensor) -> torch.Tensor:
|
| 168 |
+
target_dtype = self.patch_embedding.weight.dtype
|
| 169 |
+
patch_embeds = self.patch_embedding(pixel_values) # shape = [*, channel, width, height]
|
| 170 |
+
batch_size, _, height, width = patch_embeds.shape
|
| 171 |
+
patch_embeds = patch_embeds.flatten(2).transpose(1, 2)
|
| 172 |
+
class_embeds = self.class_embedding.expand(batch_size, 1, -1).to(target_dtype)
|
| 173 |
+
embeddings = torch.cat([class_embeds, patch_embeds], dim=1)
|
| 174 |
+
position_embedding = torch.cat([
|
| 175 |
+
self.position_embedding[:, :1, :],
|
| 176 |
+
self._get_pos_embed(self.position_embedding[:, 1:, :], height, width)
|
| 177 |
+
], dim=1)
|
| 178 |
+
embeddings = embeddings + position_embedding.to(target_dtype)
|
| 179 |
+
return embeddings
|
| 180 |
+
|
| 181 |
+
|
| 182 |
+
class InternAttention(nn.Module):
|
| 183 |
+
"""Multi-headed attention from 'Attention Is All You Need' paper"""
|
| 184 |
+
|
| 185 |
+
def __init__(self, config: InternVisionConfig):
|
| 186 |
+
super().__init__()
|
| 187 |
+
self.config = config
|
| 188 |
+
self.embed_dim = config.hidden_size
|
| 189 |
+
self.num_heads = config.num_attention_heads
|
| 190 |
+
self.use_flash_attn = config.use_flash_attn and has_flash_attn
|
| 191 |
+
if config.use_flash_attn and not has_flash_attn:
|
| 192 |
+
print('Warning: Flash Attention is not available, use_flash_attn is set to False.')
|
| 193 |
+
self.head_dim = self.embed_dim // self.num_heads
|
| 194 |
+
if self.head_dim * self.num_heads != self.embed_dim:
|
| 195 |
+
raise ValueError(
|
| 196 |
+
f'embed_dim must be divisible by num_heads (got `embed_dim`: {self.embed_dim} and `num_heads`:'
|
| 197 |
+
f' {self.num_heads}).'
|
| 198 |
+
)
|
| 199 |
+
|
| 200 |
+
self.scale = self.head_dim ** -0.5
|
| 201 |
+
self.qkv = nn.Linear(self.embed_dim, 3 * self.embed_dim, bias=config.qkv_bias)
|
| 202 |
+
self.attn_drop = nn.Dropout(config.attention_dropout)
|
| 203 |
+
self.proj_drop = nn.Dropout(config.dropout)
|
| 204 |
+
|
| 205 |
+
self.qk_normalization = config.qk_normalization
|
| 206 |
+
|
| 207 |
+
if self.qk_normalization:
|
| 208 |
+
self.q_norm = InternRMSNorm(self.embed_dim, eps=config.layer_norm_eps)
|
| 209 |
+
self.k_norm = InternRMSNorm(self.embed_dim, eps=config.layer_norm_eps)
|
| 210 |
+
|
| 211 |
+
if self.use_flash_attn:
|
| 212 |
+
self.inner_attn = FlashAttention(attention_dropout=config.attention_dropout)
|
| 213 |
+
self.proj = nn.Linear(self.embed_dim, self.embed_dim)
|
| 214 |
+
|
| 215 |
+
def _naive_attn(self, x):
|
| 216 |
+
B, N, C = x.shape
|
| 217 |
+
qkv = self.qkv(x).reshape(B, N, 3, self.num_heads, C // self.num_heads).permute(2, 0, 3, 1, 4)
|
| 218 |
+
q, k, v = qkv.unbind(0) # make torchscript happy (cannot use tensor as tuple)
|
| 219 |
+
|
| 220 |
+
if self.qk_normalization:
|
| 221 |
+
B_, H_, N_, D_ = q.shape
|
| 222 |
+
q = self.q_norm(q.transpose(1, 2).flatten(-2, -1)).view(B_, N_, H_, D_).transpose(1, 2)
|
| 223 |
+
k = self.k_norm(k.transpose(1, 2).flatten(-2, -1)).view(B_, N_, H_, D_).transpose(1, 2)
|
| 224 |
+
|
| 225 |
+
attn = ((q * self.scale) @ k.transpose(-2, -1))
|
| 226 |
+
attn = attn.softmax(dim=-1)
|
| 227 |
+
attn = self.attn_drop(attn)
|
| 228 |
+
|
| 229 |
+
x = (attn @ v).transpose(1, 2).reshape(B, N, C)
|
| 230 |
+
x = self.proj(x)
|
| 231 |
+
x = self.proj_drop(x)
|
| 232 |
+
return x
|
| 233 |
+
|
| 234 |
+
def _flash_attn(self, x, key_padding_mask=None, need_weights=False):
|
| 235 |
+
qkv = self.qkv(x)
|
| 236 |
+
qkv = rearrange(qkv, 'b s (three h d) -> b s three h d', three=3, h=self.num_heads)
|
| 237 |
+
|
| 238 |
+
if self.qk_normalization:
|
| 239 |
+
q, k, v = qkv.unbind(2)
|
| 240 |
+
q = self.q_norm(q.flatten(-2, -1)).view(q.shape)
|
| 241 |
+
k = self.k_norm(k.flatten(-2, -1)).view(k.shape)
|
| 242 |
+
qkv = torch.stack([q, k, v], dim=2)
|
| 243 |
+
|
| 244 |
+
context, _ = self.inner_attn(
|
| 245 |
+
qkv, key_padding_mask=key_padding_mask, need_weights=need_weights, causal=False
|
| 246 |
+
)
|
| 247 |
+
outs = self.proj(rearrange(context, 'b s h d -> b s (h d)'))
|
| 248 |
+
outs = self.proj_drop(outs)
|
| 249 |
+
return outs
|
| 250 |
+
|
| 251 |
+
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
|
| 252 |
+
x = self._naive_attn(hidden_states) if not self.use_flash_attn else self._flash_attn(hidden_states)
|
| 253 |
+
return x
|
| 254 |
+
|
| 255 |
+
|
| 256 |
+
class InternMLP(nn.Module):
|
| 257 |
+
def __init__(self, config: InternVisionConfig):
|
| 258 |
+
super().__init__()
|
| 259 |
+
self.config = config
|
| 260 |
+
self.act = ACT2FN[config.hidden_act]
|
| 261 |
+
self.fc1 = nn.Linear(config.hidden_size, config.intermediate_size)
|
| 262 |
+
self.fc2 = nn.Linear(config.intermediate_size, config.hidden_size)
|
| 263 |
+
|
| 264 |
+
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
|
| 265 |
+
hidden_states = self.fc1(hidden_states)
|
| 266 |
+
hidden_states = self.act(hidden_states)
|
| 267 |
+
hidden_states = self.fc2(hidden_states)
|
| 268 |
+
return hidden_states
|
| 269 |
+
|
| 270 |
+
|
| 271 |
+
class InternVisionEncoderLayer(nn.Module):
|
| 272 |
+
def __init__(self, config: InternVisionConfig, drop_path_rate: float):
|
| 273 |
+
super().__init__()
|
| 274 |
+
self.embed_dim = config.hidden_size
|
| 275 |
+
self.intermediate_size = config.intermediate_size
|
| 276 |
+
self.norm_type = config.norm_type
|
| 277 |
+
|
| 278 |
+
self.attn = InternAttention(config)
|
| 279 |
+
self.mlp = InternMLP(config)
|
| 280 |
+
self.norm1 = NORM2FN[self.norm_type](self.embed_dim, eps=config.layer_norm_eps)
|
| 281 |
+
self.norm2 = NORM2FN[self.norm_type](self.embed_dim, eps=config.layer_norm_eps)
|
| 282 |
+
|
| 283 |
+
self.ls1 = nn.Parameter(config.initializer_factor * torch.ones(self.embed_dim))
|
| 284 |
+
self.ls2 = nn.Parameter(config.initializer_factor * torch.ones(self.embed_dim))
|
| 285 |
+
self.drop_path1 = DropPath(drop_path_rate) if drop_path_rate > 0. else nn.Identity()
|
| 286 |
+
self.drop_path2 = DropPath(drop_path_rate) if drop_path_rate > 0. else nn.Identity()
|
| 287 |
+
|
| 288 |
+
def forward(
|
| 289 |
+
self,
|
| 290 |
+
hidden_states: torch.Tensor,
|
| 291 |
+
) -> Tuple[torch.FloatTensor, Optional[torch.FloatTensor], Optional[Tuple[torch.FloatTensor]]]:
|
| 292 |
+
"""
|
| 293 |
+
Args:
|
| 294 |
+
hidden_states (`Tuple[torch.FloatTensor, Optional[torch.FloatTensor]]`): input to the layer of shape `(batch, seq_len, embed_dim)`
|
| 295 |
+
"""
|
| 296 |
+
hidden_states = hidden_states + self.drop_path1(self.attn(self.norm1(hidden_states)) * self.ls1)
|
| 297 |
+
|
| 298 |
+
hidden_states = hidden_states + self.drop_path2(self.mlp(self.norm2(hidden_states)) * self.ls2)
|
| 299 |
+
|
| 300 |
+
return hidden_states
|
| 301 |
+
|
| 302 |
+
|
| 303 |
+
class InternVisionEncoder(nn.Module):
|
| 304 |
+
"""
|
| 305 |
+
Transformer encoder consisting of `config.num_hidden_layers` self attention layers. Each layer is a
|
| 306 |
+
[`InternEncoderLayer`].
|
| 307 |
+
|
| 308 |
+
Args:
|
| 309 |
+
config (`InternConfig`):
|
| 310 |
+
The corresponding vision configuration for the `InternEncoder`.
|
| 311 |
+
"""
|
| 312 |
+
|
| 313 |
+
def __init__(self, config: InternVisionConfig):
|
| 314 |
+
super().__init__()
|
| 315 |
+
self.config = config
|
| 316 |
+
# stochastic depth decay rule
|
| 317 |
+
dpr = [x.item() for x in torch.linspace(0, config.drop_path_rate, config.num_hidden_layers)]
|
| 318 |
+
self.layers = nn.ModuleList([
|
| 319 |
+
InternVisionEncoderLayer(config, dpr[idx]) for idx in range(config.num_hidden_layers)])
|
| 320 |
+
self.gradient_checkpointing = True
|
| 321 |
+
|
| 322 |
+
def forward(
|
| 323 |
+
self,
|
| 324 |
+
inputs_embeds,
|
| 325 |
+
output_hidden_states: Optional[bool] = None,
|
| 326 |
+
return_dict: Optional[bool] = None,
|
| 327 |
+
) -> Union[Tuple, BaseModelOutput]:
|
| 328 |
+
r"""
|
| 329 |
+
Args:
|
| 330 |
+
inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`):
|
| 331 |
+
Embedded representation of the inputs. Should be float, not int tokens.
|
| 332 |
+
output_hidden_states (`bool`, *optional*):
|
| 333 |
+
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors
|
| 334 |
+
for more detail.
|
| 335 |
+
return_dict (`bool`, *optional*):
|
| 336 |
+
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
|
| 337 |
+
"""
|
| 338 |
+
output_hidden_states = (
|
| 339 |
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
| 340 |
+
)
|
| 341 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
| 342 |
+
|
| 343 |
+
encoder_states = () if output_hidden_states else None
|
| 344 |
+
hidden_states = inputs_embeds
|
| 345 |
+
|
| 346 |
+
for idx, encoder_layer in enumerate(self.layers):
|
| 347 |
+
if output_hidden_states:
|
| 348 |
+
encoder_states = encoder_states + (hidden_states,)
|
| 349 |
+
if self.gradient_checkpointing and self.training:
|
| 350 |
+
layer_outputs = torch.utils.checkpoint.checkpoint(
|
| 351 |
+
encoder_layer,
|
| 352 |
+
hidden_states)
|
| 353 |
+
else:
|
| 354 |
+
layer_outputs = encoder_layer(
|
| 355 |
+
hidden_states,
|
| 356 |
+
)
|
| 357 |
+
hidden_states = layer_outputs
|
| 358 |
+
|
| 359 |
+
if output_hidden_states:
|
| 360 |
+
encoder_states = encoder_states + (hidden_states,)
|
| 361 |
+
|
| 362 |
+
if not return_dict:
|
| 363 |
+
return tuple(v for v in [hidden_states, encoder_states] if v is not None)
|
| 364 |
+
return BaseModelOutput(
|
| 365 |
+
last_hidden_state=hidden_states, hidden_states=encoder_states
|
| 366 |
+
)
|
| 367 |
+
|
| 368 |
+
|
| 369 |
+
class InternVisionModel(PreTrainedModel):
|
| 370 |
+
main_input_name = 'pixel_values'
|
| 371 |
+
config_class = InternVisionConfig
|
| 372 |
+
_no_split_modules = ['InternVisionEncoderLayer']
|
| 373 |
+
|
| 374 |
+
def __init__(self, config: InternVisionConfig):
|
| 375 |
+
super().__init__(config)
|
| 376 |
+
self.config = config
|
| 377 |
+
|
| 378 |
+
self.embeddings = InternVisionEmbeddings(config)
|
| 379 |
+
self.encoder = InternVisionEncoder(config)
|
| 380 |
+
|
| 381 |
+
def resize_pos_embeddings(self, old_size, new_size, patch_size):
|
| 382 |
+
pos_emb = self.embeddings.position_embedding
|
| 383 |
+
_, num_positions, embed_dim = pos_emb.shape
|
| 384 |
+
cls_emb = pos_emb[:, :1, :]
|
| 385 |
+
pos_emb = pos_emb[:, 1:, :].reshape(1, old_size // patch_size, old_size // patch_size, -1).permute(0, 3, 1, 2)
|
| 386 |
+
pos_emb = F.interpolate(pos_emb.float(), size=new_size // patch_size, mode='bicubic', align_corners=False)
|
| 387 |
+
pos_emb = pos_emb.to(cls_emb.dtype).reshape(1, embed_dim, -1).permute(0, 2, 1)
|
| 388 |
+
pos_emb = torch.cat([cls_emb, pos_emb], dim=1)
|
| 389 |
+
self.embeddings.position_embedding = nn.Parameter(pos_emb)
|
| 390 |
+
self.embeddings.image_size = new_size
|
| 391 |
+
logger.info('Resized position embeddings from {} to {}'.format(old_size, new_size))
|
| 392 |
+
|
| 393 |
+
def get_input_embeddings(self):
|
| 394 |
+
return self.embeddings
|
| 395 |
+
|
| 396 |
+
def forward(
|
| 397 |
+
self,
|
| 398 |
+
pixel_values: Optional[torch.FloatTensor] = None,
|
| 399 |
+
output_hidden_states: Optional[bool] = None,
|
| 400 |
+
return_dict: Optional[bool] = None,
|
| 401 |
+
pixel_embeds: Optional[torch.FloatTensor] = None,
|
| 402 |
+
) -> Union[Tuple, BaseModelOutputWithPooling]:
|
| 403 |
+
output_hidden_states = (
|
| 404 |
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
| 405 |
+
)
|
| 406 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
| 407 |
+
|
| 408 |
+
if pixel_values is None and pixel_embeds is None:
|
| 409 |
+
raise ValueError('You have to specify pixel_values or pixel_embeds')
|
| 410 |
+
|
| 411 |
+
if pixel_embeds is not None:
|
| 412 |
+
hidden_states = pixel_embeds
|
| 413 |
+
else:
|
| 414 |
+
if len(pixel_values.shape) == 4:
|
| 415 |
+
hidden_states = self.embeddings(pixel_values)
|
| 416 |
+
else:
|
| 417 |
+
raise ValueError(f'wrong pixel_values size: {pixel_values.shape}')
|
| 418 |
+
encoder_outputs = self.encoder(
|
| 419 |
+
inputs_embeds=hidden_states,
|
| 420 |
+
output_hidden_states=output_hidden_states,
|
| 421 |
+
return_dict=return_dict,
|
| 422 |
+
)
|
| 423 |
+
last_hidden_state = encoder_outputs.last_hidden_state
|
| 424 |
+
pooled_output = last_hidden_state[:, 0, :]
|
| 425 |
+
|
| 426 |
+
if not return_dict:
|
| 427 |
+
return (last_hidden_state, pooled_output) + encoder_outputs[1:]
|
| 428 |
+
|
| 429 |
+
return BaseModelOutputWithPooling(
|
| 430 |
+
last_hidden_state=last_hidden_state,
|
| 431 |
+
pooler_output=pooled_output,
|
| 432 |
+
hidden_states=encoder_outputs.hidden_states,
|
| 433 |
+
attentions=encoder_outputs.attentions,
|
| 434 |
+
)
|