NilayR commited on
Commit
3797447
·
verified ·
1 Parent(s): 582be2b

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +103 -163
README.md CHANGED
@@ -1,199 +1,139 @@
1
  ---
2
- library_name: transformers
3
- tags: []
 
 
 
 
 
 
 
 
4
  ---
5
 
6
- # Model Card for Model ID
7
 
8
- <!-- Provide a quick summary of what the model is/does. -->
9
 
 
10
 
 
11
 
12
  ## Model Details
13
 
14
  ### Model Description
15
 
16
- <!-- Provide a longer summary of what this model is. -->
17
 
18
- This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
19
 
20
- - **Developed by:** [More Information Needed]
21
- - **Funded by [optional]:** [More Information Needed]
22
- - **Shared by [optional]:** [More Information Needed]
23
- - **Model type:** [More Information Needed]
24
- - **Language(s) (NLP):** [More Information Needed]
25
- - **License:** [More Information Needed]
26
- - **Finetuned from model [optional]:** [More Information Needed]
27
-
28
- ### Model Sources [optional]
29
-
30
- <!-- Provide the basic links for the model. -->
31
-
32
- - **Repository:** [More Information Needed]
33
- - **Paper [optional]:** [More Information Needed]
34
- - **Demo [optional]:** [More Information Needed]
35
-
36
- ## Uses
37
-
38
- <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
-
40
- ### Direct Use
41
-
42
- <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
-
44
- [More Information Needed]
45
-
46
- ### Downstream Use [optional]
47
-
48
- <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
-
50
- [More Information Needed]
51
-
52
- ### Out-of-Scope Use
53
-
54
- <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
-
56
- [More Information Needed]
57
-
58
- ## Bias, Risks, and Limitations
59
-
60
- <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
-
62
- [More Information Needed]
63
-
64
- ### Recommendations
65
-
66
- <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
-
68
- Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
 
70
  ## How to Get Started with the Model
71
 
72
- Use the code below to get started with the model.
73
-
74
- [More Information Needed]
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
75
 
76
  ## Training Details
77
 
78
  ### Training Data
79
 
80
- <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
 
82
- [More Information Needed]
 
 
83
 
84
  ### Training Procedure
85
 
86
- <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
-
88
- #### Preprocessing [optional]
89
-
90
- [More Information Needed]
91
-
92
 
93
  #### Training Hyperparameters
94
 
95
- - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
-
97
- #### Speeds, Sizes, Times [optional]
98
-
99
- <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
-
101
- [More Information Needed]
102
-
103
- ## Evaluation
104
-
105
- <!-- This section describes the evaluation protocols and provides the results. -->
106
-
107
- ### Testing Data, Factors & Metrics
108
-
109
- #### Testing Data
110
-
111
- <!-- This should link to a Dataset Card if possible. -->
112
-
113
- [More Information Needed]
114
-
115
- #### Factors
116
 
117
- <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
 
119
- [More Information Needed]
120
-
121
- #### Metrics
122
-
123
- <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
-
125
- [More Information Needed]
126
-
127
- ### Results
128
-
129
- [More Information Needed]
130
-
131
- #### Summary
132
-
133
-
134
-
135
- ## Model Examination [optional]
136
-
137
- <!-- Relevant interpretability work for the model goes here -->
138
-
139
- [More Information Needed]
140
-
141
- ## Environmental Impact
142
-
143
- <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
-
145
- Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
-
147
- - **Hardware Type:** [More Information Needed]
148
- - **Hours used:** [More Information Needed]
149
- - **Cloud Provider:** [More Information Needed]
150
- - **Compute Region:** [More Information Needed]
151
- - **Carbon Emitted:** [More Information Needed]
152
-
153
- ## Technical Specifications [optional]
154
-
155
- ### Model Architecture and Objective
156
-
157
- [More Information Needed]
158
 
159
  ### Compute Infrastructure
160
 
161
- [More Information Needed]
162
-
163
- #### Hardware
164
-
165
- [More Information Needed]
166
-
167
- #### Software
168
-
169
- [More Information Needed]
170
-
171
- ## Citation [optional]
172
-
173
- <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
-
175
- **BibTeX:**
176
-
177
- [More Information Needed]
178
-
179
- **APA:**
180
-
181
- [More Information Needed]
182
-
183
- ## Glossary [optional]
184
-
185
- <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
-
187
- [More Information Needed]
188
-
189
- ## More Information [optional]
190
-
191
- [More Information Needed]
192
-
193
- ## Model Card Authors [optional]
194
 
195
- [More Information Needed]
196
 
197
- ## Model Card Contact
198
 
199
- [More Information Needed]
 
 
1
  ---
2
+ license: apache-2.0
3
+ base_model: meta-llama/Llama-3.2-1B-Instruct
4
+ tags:
5
+ - dpo
6
+ - lora
7
+ - peft
8
+ - llama-3.2
9
+ - iterative-dpo
10
+ - self-rewarding
11
+ library_name: peft
12
  ---
13
 
14
+ # Iterative DPO Fine-Tune of Llama-3.2-1B (Iteration 2)
15
 
16
+ This repository contains the LoRA adapters from the **second and final iteration** of a Direct Preference Optimization (DPO) fine-tuning process on the `meta-llama/Llama-3.2-1B-Instruct` model.
17
 
18
+ This model represents a further refinement of the Iteration 1 model, demonstrating a self-improvement loop where the model learns from preferences on its own generated outputs. This work was inspired by the "Self-Rewarding Language Models" paper.
19
 
20
+ - **Repository for Iteration 1:** [NilayR/llama32-iterative-dpo-iter1](https://huggingface.co/NilayR/llama32-iterative-dpo-iter1)
21
 
22
  ## Model Details
23
 
24
  ### Model Description
25
 
26
+ This model is the result of the second fine-tuning cycle in an iterative DPO pipeline. The process began with the model from Iteration 1 generating a new set of responses. These responses were then evaluated by an LLM Judge (GPT-3.5-Turbo) to create a fresh preference dataset. This new dataset was used to further fine-tune the model, resulting in the adapters contained in this repository.
27
 
28
+ The goal of this iteration was to demonstrate that the model could continue to improve its alignment with desired behaviors (accuracy, helpfulness, clarity) using its own outputs as a foundation for learning.
29
 
30
+ - **Developed by:** NilayR
31
+ - **Model type:** Causal Language Model
32
+ - **Language(s):** English
33
+ - **License:** apache-2.0
34
+ - **Finetuned from model:** `meta-llama/Llama-3.2-1B-Instruct` (with adapters from Iteration 1)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
35
 
36
  ## How to Get Started with the Model
37
 
38
+ To use these LoRA adapters, load the base model (`meta-llama/Llama-3.2-1B-Instruct`) and then apply the adapters from this repository.
39
+
40
+ ```python
41
+ import torch
42
+ from peft import PeftModel
43
+ from transformers import AutoModelForCausalLM, AutoTokenizer, BitsAndBytesConfig
44
+
45
+ # Set base model ID and adapter path
46
+ base_model_id = "meta-llama/Llama-3.2-1B-Instruct"
47
+ adapter_id = "NilayR/llama32-iterative-dpo-iter2"
48
+
49
+ # Configure BitsAndBytes for 4-bit quantization
50
+ bnb_config = BitsAndBytesConfig(
51
+ load_in_4bit=True,
52
+ bnb_4bit_quant_type="nf4",
53
+ bnb_4bit_compute_dtype=torch.bfloat16
54
+ )
55
+
56
+ # Load the base model with quantization
57
+ base_model = AutoModelForCausalLM.from_pretrained(
58
+ base_model_id,
59
+ quantization_config=bnb_config,
60
+ device_map="auto",
61
+ trust_remote_code=True,
62
+ )
63
+
64
+ # Load the tokenizer
65
+ tokenizer = AutoTokenizer.from_pretrained(base_model_id)
66
+ tokenizer.pad_token = tokenizer.eos_token
67
+
68
+ # Load and apply the PEFT adapters
69
+ model = PeftModel.from_pretrained(base_model, adapter_id)
70
+
71
+ # --- Generate a response ---
72
+ prompt = "What are the key benefits of meditation?"
73
+ messages = [
74
+ {"role": "system", "content": "You are a helpful assistant."},
75
+ {"role": "user", "content": prompt}
76
+ ]
77
+
78
+ input_ids = tokenizer.apply_chat_template(
79
+ messages,
80
+ add_generation_prompt=True,
81
+ return_tensors="pt"
82
+ ).to(model.device)
83
+
84
+ outputs = model.generate(
85
+ input_ids,
86
+ max_new_tokens=200,
87
+ do_sample=True,
88
+ temperature=0.7,
89
+ top_p=0.95
90
+ )
91
+
92
+ response = tokenizer.decode(outputs[0], skip_special_tokens=True)
93
+ print(response.split("assistant")[-1].strip())
94
+ ```
95
 
96
  ## Training Details
97
 
98
  ### Training Data
99
 
100
+ The model was trained on a preference dataset generated by the **Iteration 1 model** (`NilayR/llama32-iterative-dpo-iter1`).
101
 
102
+ * **Data Generation Process:**
103
+ 1. **Instructions:** The model from Iteration 1 generated responses to 20 instructions from the LIMA dataset.
104
+ 2. **Preference Labeling:** A custom LLM Judge powered by `GPT-3.5-Turbo` evaluated pairs of the new responses, creating a dataset of **57 chosen/rejected pairs**.
105
 
106
  ### Training Procedure
107
 
108
+ The model was trained for one epoch using the TRL library's `DPOTrainer`.
 
 
 
 
 
109
 
110
  #### Training Hyperparameters
111
 
112
+ * **Framework:** `trl.DPOTrainer`
113
+ * **Epochs:** 1
114
+ * **Batch Size:** 1
115
+ * **Gradient Accumulation Steps:** 2 (Effective Batch Size: 2)
116
+ * **Optimizer:** `paged_adamw_8bit`
117
+ * **Learning Rate:** 2e-5
118
+ * **DPO Beta (β):** 0.1
119
+ * **Max Steps:** 50
120
+ * **Final Training Loss:** `0.6343`
 
 
 
 
 
 
 
 
 
 
 
 
121
 
122
+ #### LoRA Configuration
123
 
124
+ * **Rank (`r`):** 16
125
+ * **Alpha (`lora_alpha`):** 32
126
+ * **Target Modules:** `q_proj`, `k_proj`, `v_proj`, `o_proj`
127
+ * **Dropout:** 0.05
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
128
 
129
  ### Compute Infrastructure
130
 
131
+ * **Hardware:** 1x NVIDIA A100 40GB GPU
132
+ * **Cloud Provider:** Google Colab
133
+ * **Software:** `transformers`, `peft`, `trl`, `bitsandbytes`
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
134
 
135
+ -----
136
 
 
137
 
138
+ ```
139
+ ```