nexaml commited on
Commit
53560ad
·
verified ·
1 Parent(s): ab764c7

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +156 -8
README.md CHANGED
@@ -12,15 +12,163 @@ tags:
12
  - mlx
13
  ---
14
 
15
- # mlx-community/gemma-3-4b-it-8bit
16
- This model was converted to MLX format from [`google/gemma-3-4b-it`]() using mlx-vlm version **0.1.18**.
17
- Refer to the [original model card](https://huggingface.co/google/gemma-3-4b-it) for more details on the model.
18
- ## Use with mlx
19
 
20
- ```bash
21
- pip install -U mlx-vlm
22
- ```
 
23
 
24
  ```bash
25
- python -m mlx_vlm.generate --model mlx-community/gemma-3-4b-it-8bit --max-tokens 100 --temperature 0.0 --prompt "Describe this image." --image <path_to_image>
26
  ```
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
12
  - mlx
13
  ---
14
 
15
+ # nexaml/gemma-3-4b-it-8bit-MLX
 
 
 
16
 
17
+ ## Quickstart
18
+
19
+ Run them directly with [nexa-sdk](https://github.com/NexaAI/nexa-sdk) installed
20
+ In nexa-sdk CLI:
21
 
22
  ```bash
23
+ nexaml/gemma-3-4b-it-8bit-MLX
24
  ```
25
+
26
+ ## Overview
27
+
28
+ Gemma is a family of lightweight, state-of-the-art open models from Google,
29
+ built from the same research and technology used to create the Gemini models.
30
+ Gemma 3 models are multimodal, handling text and image input and generating text
31
+ output, with open weights for both pre-trained variants and instruction-tuned
32
+ variants. Gemma 3 has a large, 128K context window, multilingual support in over
33
+ 140 languages, and is available in more sizes than previous versions. Gemma 3
34
+ models are well-suited for a variety of text generation and image understanding
35
+ tasks, including question answering, summarization, and reasoning. Their
36
+ relatively small size makes it possible to deploy them in environments with
37
+ limited resources such as laptops, desktops or your own cloud infrastructure,
38
+ democratizing access to state of the art AI models and helping foster innovation
39
+ for everyone.
40
+
41
+ ### Inputs and outputs
42
+
43
+ - **Input:**
44
+ - Text string, such as a question, a prompt, or a document to be summarized
45
+ - Images, normalized to 896 x 896 resolution and encoded to 256 tokens
46
+ each
47
+ - Total input context of 128K tokens for the 4B, 12B, and 27B sizes, and
48
+ 32K tokens for the 1B size
49
+ - **Output:**
50
+ - Generated text in response to the input, such as an answer to a
51
+ question, analysis of image content, or a summary of a document
52
+ - Total output context of 8192 tokens
53
+
54
+ ## Benchmark Results
55
+
56
+ These models were evaluated against a large collection of different datasets and
57
+ metrics to cover different aspects of text generation:
58
+
59
+ #### Reasoning and factuality
60
+
61
+ | Benchmark | Metric | Gemma 3 PT 1B | Gemma 3 PT 4B | Gemma 3 PT 12B | Gemma 3 PT 27B |
62
+ | ------------------------------ |----------------|:--------------:|:-------------:|:--------------:|:--------------:|
63
+ | [HellaSwag][hellaswag] | 10-shot | 62.3 | 77.2 | 84.2 | 85.6 |
64
+ | [BoolQ][boolq] | 0-shot | 63.2 | 72.3 | 78.8 | 82.4 |
65
+ | [PIQA][piqa] | 0-shot | 73.8 | 79.6 | 81.8 | 83.3 |
66
+ | [SocialIQA][socialiqa] | 0-shot | 48.9 | 51.9 | 53.4 | 54.9 |
67
+ | [TriviaQA][triviaqa] | 5-shot | 39.8 | 65.8 | 78.2 | 85.5 |
68
+ | [Natural Questions][naturalq] | 5-shot | 9.48 | 20.0 | 31.4 | 36.1 |
69
+ | [ARC-c][arc] | 25-shot | 38.4 | 56.2 | 68.9 | 70.6 |
70
+ | [ARC-e][arc] | 0-shot | 73.0 | 82.4 | 88.3 | 89.0 |
71
+ | [WinoGrande][winogrande] | 5-shot | 58.2 | 64.7 | 74.3 | 78.8 |
72
+ | [BIG-Bench Hard][bbh] | few-shot | 28.4 | 50.9 | 72.6 | 77.7 |
73
+ | [DROP][drop] | 1-shot | 42.4 | 60.1 | 72.2 | 77.2 |
74
+
75
+ [hellaswag]: https://arxiv.org/abs/1905.07830
76
+ [boolq]: https://arxiv.org/abs/1905.10044
77
+ [piqa]: https://arxiv.org/abs/1911.11641
78
+ [socialiqa]: https://arxiv.org/abs/1904.09728
79
+ [triviaqa]: https://arxiv.org/abs/1705.03551
80
+ [naturalq]: https://github.com/google-research-datasets/natural-questions
81
+ [arc]: https://arxiv.org/abs/1911.01547
82
+ [winogrande]: https://arxiv.org/abs/1907.10641
83
+ [bbh]: https://paperswithcode.com/dataset/bbh
84
+ [drop]: https://arxiv.org/abs/1903.00161
85
+
86
+ #### STEM and code
87
+
88
+ | Benchmark | Metric | Gemma 3 PT 4B | Gemma 3 PT 12B | Gemma 3 PT 27B |
89
+ | ------------------------------ |----------------|:-------------:|:--------------:|:--------------:|
90
+ | [MMLU][mmlu] | 5-shot | 59.6 | 74.5 | 78.6 |
91
+ | [MMLU][mmlu] (Pro COT) | 5-shot | 29.2 | 45.3 | 52.2 |
92
+ | [AGIEval][agieval] | 3-5-shot | 42.1 | 57.4 | 66.2 |
93
+ | [MATH][math] | 4-shot | 24.2 | 43.3 | 50.0 |
94
+ | [GSM8K][gsm8k] | 8-shot | 38.4 | 71.0 | 82.6 |
95
+ | [GPQA][gpqa] | 5-shot | 15.0 | 25.4 | 24.3 |
96
+ | [MBPP][mbpp] | 3-shot | 46.0 | 60.4 | 65.6 |
97
+ | [HumanEval][humaneval] | 0-shot | 36.0 | 45.7 | 48.8 |
98
+
99
+ [mmlu]: https://arxiv.org/abs/2009.03300
100
+ [agieval]: https://arxiv.org/abs/2304.06364
101
+ [math]: https://arxiv.org/abs/2103.03874
102
+ [gsm8k]: https://arxiv.org/abs/2110.14168
103
+ [gpqa]: https://arxiv.org/abs/2311.12022
104
+ [mbpp]: https://arxiv.org/abs/2108.07732
105
+ [humaneval]: https://arxiv.org/abs/2107.03374
106
+
107
+ #### Multilingual
108
+
109
+ | Benchmark | Gemma 3 PT 1B | Gemma 3 PT 4B | Gemma 3 PT 12B | Gemma 3 PT 27B |
110
+ | ------------------------------------ |:-------------:|:-------------:|:--------------:|:--------------:|
111
+ | [MGSM][mgsm] | 2.04 | 34.7 | 64.3 | 74.3 |
112
+ | [Global-MMLU-Lite][global-mmlu-lite] | 24.9 | 57.0 | 69.4 | 75.7 |
113
+ | [WMT24++][wmt24pp] (ChrF) | 36.7 | 48.4 | 53.9 | 55.7 |
114
+ | [FloRes][flores] | 29.5 | 39.2 | 46.0 | 48.8 |
115
+ | [XQuAD][xquad] (all) | 43.9 | 68.0 | 74.5 | 76.8 |
116
+ | [ECLeKTic][eclektic] | 4.69 | 11.0 | 17.2 | 24.4 |
117
+ | [IndicGenBench][indicgenbench] | 41.4 | 57.2 | 61.7 | 63.4 |
118
+
119
+ [mgsm]: https://arxiv.org/abs/2210.03057
120
+ [flores]: https://arxiv.org/abs/2106.03193
121
+ [xquad]: https://arxiv.org/abs/1910.11856v3
122
+ [global-mmlu-lite]: https://huggingface.co/datasets/CohereForAI/Global-MMLU-Lite
123
+ [wmt24pp]: https://arxiv.org/abs/2502.12404v1
124
+ [eclektic]: https://arxiv.org/abs/2502.21228
125
+ [indicgenbench]: https://arxiv.org/abs/2404.16816
126
+
127
+ #### Multimodal
128
+
129
+ | Benchmark | Gemma 3 PT 4B | Gemma 3 PT 12B | Gemma 3 PT 27B |
130
+ | ------------------------------ |:-------------:|:--------------:|:--------------:|
131
+ | [COCOcap][coco-cap] | 102 | 111 | 116 |
132
+ | [DocVQA][docvqa] (val) | 72.8 | 82.3 | 85.6 |
133
+ | [InfoVQA][info-vqa] (val) | 44.1 | 54.8 | 59.4 |
134
+ | [MMMU][mmmu] (pt) | 39.2 | 50.3 | 56.1 |
135
+ | [TextVQA][textvqa] (val) | 58.9 | 66.5 | 68.6 |
136
+ | [RealWorldQA][realworldqa] | 45.5 | 52.2 | 53.9 |
137
+ | [ReMI][remi] | 27.3 | 38.5 | 44.8 |
138
+ | [AI2D][ai2d] | 63.2 | 75.2 | 79.0 |
139
+ | [ChartQA][chartqa] | 63.6 | 74.7 | 76.3 |
140
+ | [VQAv2][vqav2] | 63.9 | 71.2 | 72.9 |
141
+ | [BLINK][blinkvqa] | 38.0 | 35.9 | 39.6 |
142
+ | [OKVQA][okvqa] | 51.0 | 58.7 | 60.2 |
143
+ | [TallyQA][tallyqa] | 42.5 | 51.8 | 54.3 |
144
+ | [SpatialSense VQA][ss-vqa] | 50.9 | 60.0 | 59.4 |
145
+ | [CountBenchQA][countbenchqa] | 26.1 | 17.8 | 68.0 |
146
+
147
+ [coco-cap]: https://cocodataset.org/#home
148
+ [docvqa]: https://www.docvqa.org/
149
+ [info-vqa]: https://arxiv.org/abs/2104.12756
150
+ [mmmu]: https://arxiv.org/abs/2311.16502
151
+ [textvqa]: https://textvqa.org/
152
+ [realworldqa]: https://paperswithcode.com/dataset/realworldqa
153
+ [remi]: https://arxiv.org/html/2406.09175v1
154
+ [ai2d]: https://allenai.org/data/diagrams
155
+ [chartqa]: https://arxiv.org/abs/2203.10244
156
+ [vqav2]: https://visualqa.org/index.html
157
+ [blinkvqa]: https://arxiv.org/abs/2404.12390
158
+ [okvqa]: https://okvqa.allenai.org/
159
+ [tallyqa]: https://arxiv.org/abs/1810.12440
160
+ [ss-vqa]: https://arxiv.org/abs/1908.02660
161
+ [countbenchqa]: https://github.com/google-research/big_vision/blob/main/big_vision/datasets/countbenchqa/
162
+
163
+ ## Reference
164
+ - **Original model card**: [google/gemma-3-4b-it](https://huggingface.co/google/gemma-3-4b-it)
165
+ - **Model Page**: [Gemma](https://ai.google.dev/gemma/docs/core)
166
+ - [Gemma 3 Technical Report][g3-tech-report]
167
+ - [Responsible Generative AI Toolkit][rai-toolkit]
168
+ - [Gemma on Kaggle][kaggle-gemma]
169
+ - [Gemma on Vertex Model Garden][vertex-mg-gemma3]
170
+
171
+ [g3-tech-report]: https://goo.gle/Gemma3Report
172
+ [rai-toolkit]: https://ai.google.dev/responsible
173
+ [kaggle-gemma]: https://www.kaggle.com/models/google/gemma-3
174
+ [vertex-mg-gemma3]: https://console.cloud.google.com/vertex-ai/publishers/google/model-garden/gemma3