Update README.md
Browse files
README.md
CHANGED
@@ -12,15 +12,163 @@ tags:
|
|
12 |
- mlx
|
13 |
---
|
14 |
|
15 |
-
#
|
16 |
-
This model was converted to MLX format from [`google/gemma-3-4b-it`]() using mlx-vlm version **0.1.18**.
|
17 |
-
Refer to the [original model card](https://huggingface.co/google/gemma-3-4b-it) for more details on the model.
|
18 |
-
## Use with mlx
|
19 |
|
20 |
-
|
21 |
-
|
22 |
-
|
|
|
23 |
|
24 |
```bash
|
25 |
-
|
26 |
```
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
12 |
- mlx
|
13 |
---
|
14 |
|
15 |
+
# nexaml/gemma-3-4b-it-8bit-MLX
|
|
|
|
|
|
|
16 |
|
17 |
+
## Quickstart
|
18 |
+
|
19 |
+
Run them directly with [nexa-sdk](https://github.com/NexaAI/nexa-sdk) installed
|
20 |
+
In nexa-sdk CLI:
|
21 |
|
22 |
```bash
|
23 |
+
nexaml/gemma-3-4b-it-8bit-MLX
|
24 |
```
|
25 |
+
|
26 |
+
## Overview
|
27 |
+
|
28 |
+
Gemma is a family of lightweight, state-of-the-art open models from Google,
|
29 |
+
built from the same research and technology used to create the Gemini models.
|
30 |
+
Gemma 3 models are multimodal, handling text and image input and generating text
|
31 |
+
output, with open weights for both pre-trained variants and instruction-tuned
|
32 |
+
variants. Gemma 3 has a large, 128K context window, multilingual support in over
|
33 |
+
140 languages, and is available in more sizes than previous versions. Gemma 3
|
34 |
+
models are well-suited for a variety of text generation and image understanding
|
35 |
+
tasks, including question answering, summarization, and reasoning. Their
|
36 |
+
relatively small size makes it possible to deploy them in environments with
|
37 |
+
limited resources such as laptops, desktops or your own cloud infrastructure,
|
38 |
+
democratizing access to state of the art AI models and helping foster innovation
|
39 |
+
for everyone.
|
40 |
+
|
41 |
+
### Inputs and outputs
|
42 |
+
|
43 |
+
- **Input:**
|
44 |
+
- Text string, such as a question, a prompt, or a document to be summarized
|
45 |
+
- Images, normalized to 896 x 896 resolution and encoded to 256 tokens
|
46 |
+
each
|
47 |
+
- Total input context of 128K tokens for the 4B, 12B, and 27B sizes, and
|
48 |
+
32K tokens for the 1B size
|
49 |
+
- **Output:**
|
50 |
+
- Generated text in response to the input, such as an answer to a
|
51 |
+
question, analysis of image content, or a summary of a document
|
52 |
+
- Total output context of 8192 tokens
|
53 |
+
|
54 |
+
## Benchmark Results
|
55 |
+
|
56 |
+
These models were evaluated against a large collection of different datasets and
|
57 |
+
metrics to cover different aspects of text generation:
|
58 |
+
|
59 |
+
#### Reasoning and factuality
|
60 |
+
|
61 |
+
| Benchmark | Metric | Gemma 3 PT 1B | Gemma 3 PT 4B | Gemma 3 PT 12B | Gemma 3 PT 27B |
|
62 |
+
| ------------------------------ |----------------|:--------------:|:-------------:|:--------------:|:--------------:|
|
63 |
+
| [HellaSwag][hellaswag] | 10-shot | 62.3 | 77.2 | 84.2 | 85.6 |
|
64 |
+
| [BoolQ][boolq] | 0-shot | 63.2 | 72.3 | 78.8 | 82.4 |
|
65 |
+
| [PIQA][piqa] | 0-shot | 73.8 | 79.6 | 81.8 | 83.3 |
|
66 |
+
| [SocialIQA][socialiqa] | 0-shot | 48.9 | 51.9 | 53.4 | 54.9 |
|
67 |
+
| [TriviaQA][triviaqa] | 5-shot | 39.8 | 65.8 | 78.2 | 85.5 |
|
68 |
+
| [Natural Questions][naturalq] | 5-shot | 9.48 | 20.0 | 31.4 | 36.1 |
|
69 |
+
| [ARC-c][arc] | 25-shot | 38.4 | 56.2 | 68.9 | 70.6 |
|
70 |
+
| [ARC-e][arc] | 0-shot | 73.0 | 82.4 | 88.3 | 89.0 |
|
71 |
+
| [WinoGrande][winogrande] | 5-shot | 58.2 | 64.7 | 74.3 | 78.8 |
|
72 |
+
| [BIG-Bench Hard][bbh] | few-shot | 28.4 | 50.9 | 72.6 | 77.7 |
|
73 |
+
| [DROP][drop] | 1-shot | 42.4 | 60.1 | 72.2 | 77.2 |
|
74 |
+
|
75 |
+
[hellaswag]: https://arxiv.org/abs/1905.07830
|
76 |
+
[boolq]: https://arxiv.org/abs/1905.10044
|
77 |
+
[piqa]: https://arxiv.org/abs/1911.11641
|
78 |
+
[socialiqa]: https://arxiv.org/abs/1904.09728
|
79 |
+
[triviaqa]: https://arxiv.org/abs/1705.03551
|
80 |
+
[naturalq]: https://github.com/google-research-datasets/natural-questions
|
81 |
+
[arc]: https://arxiv.org/abs/1911.01547
|
82 |
+
[winogrande]: https://arxiv.org/abs/1907.10641
|
83 |
+
[bbh]: https://paperswithcode.com/dataset/bbh
|
84 |
+
[drop]: https://arxiv.org/abs/1903.00161
|
85 |
+
|
86 |
+
#### STEM and code
|
87 |
+
|
88 |
+
| Benchmark | Metric | Gemma 3 PT 4B | Gemma 3 PT 12B | Gemma 3 PT 27B |
|
89 |
+
| ------------------------------ |----------------|:-------------:|:--------------:|:--------------:|
|
90 |
+
| [MMLU][mmlu] | 5-shot | 59.6 | 74.5 | 78.6 |
|
91 |
+
| [MMLU][mmlu] (Pro COT) | 5-shot | 29.2 | 45.3 | 52.2 |
|
92 |
+
| [AGIEval][agieval] | 3-5-shot | 42.1 | 57.4 | 66.2 |
|
93 |
+
| [MATH][math] | 4-shot | 24.2 | 43.3 | 50.0 |
|
94 |
+
| [GSM8K][gsm8k] | 8-shot | 38.4 | 71.0 | 82.6 |
|
95 |
+
| [GPQA][gpqa] | 5-shot | 15.0 | 25.4 | 24.3 |
|
96 |
+
| [MBPP][mbpp] | 3-shot | 46.0 | 60.4 | 65.6 |
|
97 |
+
| [HumanEval][humaneval] | 0-shot | 36.0 | 45.7 | 48.8 |
|
98 |
+
|
99 |
+
[mmlu]: https://arxiv.org/abs/2009.03300
|
100 |
+
[agieval]: https://arxiv.org/abs/2304.06364
|
101 |
+
[math]: https://arxiv.org/abs/2103.03874
|
102 |
+
[gsm8k]: https://arxiv.org/abs/2110.14168
|
103 |
+
[gpqa]: https://arxiv.org/abs/2311.12022
|
104 |
+
[mbpp]: https://arxiv.org/abs/2108.07732
|
105 |
+
[humaneval]: https://arxiv.org/abs/2107.03374
|
106 |
+
|
107 |
+
#### Multilingual
|
108 |
+
|
109 |
+
| Benchmark | Gemma 3 PT 1B | Gemma 3 PT 4B | Gemma 3 PT 12B | Gemma 3 PT 27B |
|
110 |
+
| ------------------------------------ |:-------------:|:-------------:|:--------------:|:--------------:|
|
111 |
+
| [MGSM][mgsm] | 2.04 | 34.7 | 64.3 | 74.3 |
|
112 |
+
| [Global-MMLU-Lite][global-mmlu-lite] | 24.9 | 57.0 | 69.4 | 75.7 |
|
113 |
+
| [WMT24++][wmt24pp] (ChrF) | 36.7 | 48.4 | 53.9 | 55.7 |
|
114 |
+
| [FloRes][flores] | 29.5 | 39.2 | 46.0 | 48.8 |
|
115 |
+
| [XQuAD][xquad] (all) | 43.9 | 68.0 | 74.5 | 76.8 |
|
116 |
+
| [ECLeKTic][eclektic] | 4.69 | 11.0 | 17.2 | 24.4 |
|
117 |
+
| [IndicGenBench][indicgenbench] | 41.4 | 57.2 | 61.7 | 63.4 |
|
118 |
+
|
119 |
+
[mgsm]: https://arxiv.org/abs/2210.03057
|
120 |
+
[flores]: https://arxiv.org/abs/2106.03193
|
121 |
+
[xquad]: https://arxiv.org/abs/1910.11856v3
|
122 |
+
[global-mmlu-lite]: https://huggingface.co/datasets/CohereForAI/Global-MMLU-Lite
|
123 |
+
[wmt24pp]: https://arxiv.org/abs/2502.12404v1
|
124 |
+
[eclektic]: https://arxiv.org/abs/2502.21228
|
125 |
+
[indicgenbench]: https://arxiv.org/abs/2404.16816
|
126 |
+
|
127 |
+
#### Multimodal
|
128 |
+
|
129 |
+
| Benchmark | Gemma 3 PT 4B | Gemma 3 PT 12B | Gemma 3 PT 27B |
|
130 |
+
| ------------------------------ |:-------------:|:--------------:|:--------------:|
|
131 |
+
| [COCOcap][coco-cap] | 102 | 111 | 116 |
|
132 |
+
| [DocVQA][docvqa] (val) | 72.8 | 82.3 | 85.6 |
|
133 |
+
| [InfoVQA][info-vqa] (val) | 44.1 | 54.8 | 59.4 |
|
134 |
+
| [MMMU][mmmu] (pt) | 39.2 | 50.3 | 56.1 |
|
135 |
+
| [TextVQA][textvqa] (val) | 58.9 | 66.5 | 68.6 |
|
136 |
+
| [RealWorldQA][realworldqa] | 45.5 | 52.2 | 53.9 |
|
137 |
+
| [ReMI][remi] | 27.3 | 38.5 | 44.8 |
|
138 |
+
| [AI2D][ai2d] | 63.2 | 75.2 | 79.0 |
|
139 |
+
| [ChartQA][chartqa] | 63.6 | 74.7 | 76.3 |
|
140 |
+
| [VQAv2][vqav2] | 63.9 | 71.2 | 72.9 |
|
141 |
+
| [BLINK][blinkvqa] | 38.0 | 35.9 | 39.6 |
|
142 |
+
| [OKVQA][okvqa] | 51.0 | 58.7 | 60.2 |
|
143 |
+
| [TallyQA][tallyqa] | 42.5 | 51.8 | 54.3 |
|
144 |
+
| [SpatialSense VQA][ss-vqa] | 50.9 | 60.0 | 59.4 |
|
145 |
+
| [CountBenchQA][countbenchqa] | 26.1 | 17.8 | 68.0 |
|
146 |
+
|
147 |
+
[coco-cap]: https://cocodataset.org/#home
|
148 |
+
[docvqa]: https://www.docvqa.org/
|
149 |
+
[info-vqa]: https://arxiv.org/abs/2104.12756
|
150 |
+
[mmmu]: https://arxiv.org/abs/2311.16502
|
151 |
+
[textvqa]: https://textvqa.org/
|
152 |
+
[realworldqa]: https://paperswithcode.com/dataset/realworldqa
|
153 |
+
[remi]: https://arxiv.org/html/2406.09175v1
|
154 |
+
[ai2d]: https://allenai.org/data/diagrams
|
155 |
+
[chartqa]: https://arxiv.org/abs/2203.10244
|
156 |
+
[vqav2]: https://visualqa.org/index.html
|
157 |
+
[blinkvqa]: https://arxiv.org/abs/2404.12390
|
158 |
+
[okvqa]: https://okvqa.allenai.org/
|
159 |
+
[tallyqa]: https://arxiv.org/abs/1810.12440
|
160 |
+
[ss-vqa]: https://arxiv.org/abs/1908.02660
|
161 |
+
[countbenchqa]: https://github.com/google-research/big_vision/blob/main/big_vision/datasets/countbenchqa/
|
162 |
+
|
163 |
+
## Reference
|
164 |
+
- **Original model card**: [google/gemma-3-4b-it](https://huggingface.co/google/gemma-3-4b-it)
|
165 |
+
- **Model Page**: [Gemma](https://ai.google.dev/gemma/docs/core)
|
166 |
+
- [Gemma 3 Technical Report][g3-tech-report]
|
167 |
+
- [Responsible Generative AI Toolkit][rai-toolkit]
|
168 |
+
- [Gemma on Kaggle][kaggle-gemma]
|
169 |
+
- [Gemma on Vertex Model Garden][vertex-mg-gemma3]
|
170 |
+
|
171 |
+
[g3-tech-report]: https://goo.gle/Gemma3Report
|
172 |
+
[rai-toolkit]: https://ai.google.dev/responsible
|
173 |
+
[kaggle-gemma]: https://www.kaggle.com/models/google/gemma-3
|
174 |
+
[vertex-mg-gemma3]: https://console.cloud.google.com/vertex-ai/publishers/google/model-garden/gemma3
|