update model card README.md
Browse files
    	
        README.md
    CHANGED
    
    | 
         @@ -1,3 +1,106 @@ 
     | 
|
| 1 | 
         
            -
            ---
         
     | 
| 2 | 
         
            -
            license:  
     | 
| 3 | 
         
            -
             
     | 
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
| 
         | 
|
| 1 | 
         
            +
            ---
         
     | 
| 2 | 
         
            +
            license: apache-2.0
         
     | 
| 3 | 
         
            +
            tags:
         
     | 
| 4 | 
         
            +
            - generated_from_trainer
         
     | 
| 5 | 
         
            +
            model-index:
         
     | 
| 6 | 
         
            +
            - name: wav2vec2-xlsr-1B-NPSC-NN
         
     | 
| 7 | 
         
            +
              results: []
         
     | 
| 8 | 
         
            +
            ---
         
     | 
| 9 | 
         
            +
             
     | 
| 10 | 
         
            +
            <!-- This model card has been generated automatically according to the information the Trainer had access to. You
         
     | 
| 11 | 
         
            +
            should probably proofread and complete it, then remove this comment. -->
         
     | 
| 12 | 
         
            +
             
     | 
| 13 | 
         
            +
            # wav2vec2-xlsr-1B-NPSC-NN
         
     | 
| 14 | 
         
            +
             
     | 
| 15 | 
         
            +
            This model is a fine-tuned version of [facebook/wav2vec2-xls-r-1b](https://huggingface.co/facebook/wav2vec2-xls-r-1b) on the None dataset.
         
     | 
| 16 | 
         
            +
            It achieves the following results on the evaluation set:
         
     | 
| 17 | 
         
            +
            - Loss: 0.4567
         
     | 
| 18 | 
         
            +
            - Wer: 0.1533
         
     | 
| 19 | 
         
            +
             
     | 
| 20 | 
         
            +
            ## Model description
         
     | 
| 21 | 
         
            +
             
     | 
| 22 | 
         
            +
            More information needed
         
     | 
| 23 | 
         
            +
             
     | 
| 24 | 
         
            +
            ## Intended uses & limitations
         
     | 
| 25 | 
         
            +
             
     | 
| 26 | 
         
            +
            More information needed
         
     | 
| 27 | 
         
            +
             
     | 
| 28 | 
         
            +
            ## Training and evaluation data
         
     | 
| 29 | 
         
            +
             
     | 
| 30 | 
         
            +
            More information needed
         
     | 
| 31 | 
         
            +
             
     | 
| 32 | 
         
            +
            ## Training procedure
         
     | 
| 33 | 
         
            +
             
     | 
| 34 | 
         
            +
            ### Training hyperparameters
         
     | 
| 35 | 
         
            +
             
     | 
| 36 | 
         
            +
            The following hyperparameters were used during training:
         
     | 
| 37 | 
         
            +
            - learning_rate: 6e-05
         
     | 
| 38 | 
         
            +
            - train_batch_size: 8
         
     | 
| 39 | 
         
            +
            - eval_batch_size: 8
         
     | 
| 40 | 
         
            +
            - seed: 42
         
     | 
| 41 | 
         
            +
            - gradient_accumulation_steps: 2
         
     | 
| 42 | 
         
            +
            - total_train_batch_size: 16
         
     | 
| 43 | 
         
            +
            - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
         
     | 
| 44 | 
         
            +
            - lr_scheduler_type: linear
         
     | 
| 45 | 
         
            +
            - lr_scheduler_warmup_steps: 2000
         
     | 
| 46 | 
         
            +
            - num_epochs: 50.0
         
     | 
| 47 | 
         
            +
            - mixed_precision_training: Native AMP
         
     | 
| 48 | 
         
            +
             
     | 
| 49 | 
         
            +
            ### Training results
         
     | 
| 50 | 
         
            +
             
     | 
| 51 | 
         
            +
            | Training Loss | Epoch | Step  | Validation Loss | Wer    |
         
     | 
| 52 | 
         
            +
            |:-------------:|:-----:|:-----:|:---------------:|:------:|
         
     | 
| 53 | 
         
            +
            | 1.6894        | 1.08  | 500   | 1.2423          | 0.8619 |
         
     | 
| 54 | 
         
            +
            | 0.7543        | 2.15  | 1000  | 0.5956          | 0.3817 |
         
     | 
| 55 | 
         
            +
            | 0.5481        | 3.23  | 1500  | 0.5043          | 0.3246 |
         
     | 
| 56 | 
         
            +
            | 0.4661        | 4.3   | 2000  | 0.4813          | 0.2793 |
         
     | 
| 57 | 
         
            +
            | 0.3901        | 5.38  | 2500  | 0.4371          | 0.2592 |
         
     | 
| 58 | 
         
            +
            | 0.3512        | 6.45  | 3000  | 0.4216          | 0.2458 |
         
     | 
| 59 | 
         
            +
            | 0.3016        | 7.53  | 3500  | 0.3814          | 0.2257 |
         
     | 
| 60 | 
         
            +
            | 0.278         | 8.6   | 4000  | 0.4151          | 0.2145 |
         
     | 
| 61 | 
         
            +
            | 0.2435        | 9.68  | 4500  | 0.4816          | 0.2130 |
         
     | 
| 62 | 
         
            +
            | 0.2122        | 10.75 | 5000  | 0.4489          | 0.2137 |
         
     | 
| 63 | 
         
            +
            | 0.1949        | 11.83 | 5500  | 0.3978          | 0.2063 |
         
     | 
| 64 | 
         
            +
            | 0.1929        | 12.9  | 6000  | 0.3823          | 0.2026 |
         
     | 
| 65 | 
         
            +
            | 0.1757        | 13.98 | 6500  | 0.3409          | 0.1965 |
         
     | 
| 66 | 
         
            +
            | 0.1771        | 15.05 | 7000  | 0.3844          | 0.1936 |
         
     | 
| 67 | 
         
            +
            | 0.1452        | 16.13 | 7500  | 0.3749          | 0.1900 |
         
     | 
| 68 | 
         
            +
            | 0.1341        | 17.2  | 8000  | 0.4407          | 0.2026 |
         
     | 
| 69 | 
         
            +
            | 0.13          | 18.28 | 8500  | 0.4253          | 0.1883 |
         
     | 
| 70 | 
         
            +
            | 0.1183        | 19.35 | 9000  | 0.4311          | 0.1880 |
         
     | 
| 71 | 
         
            +
            | 0.118         | 20.43 | 9500  | 0.4431          | 0.1882 |
         
     | 
| 72 | 
         
            +
            | 0.1123        | 21.51 | 10000 | 0.4753          | 0.1820 |
         
     | 
| 73 | 
         
            +
            | 0.1037        | 22.58 | 10500 | 0.4087          | 0.1834 |
         
     | 
| 74 | 
         
            +
            | 0.1066        | 23.66 | 11000 | 0.4151          | 0.1845 |
         
     | 
| 75 | 
         
            +
            | 0.0977        | 24.73 | 11500 | 0.4367          | 0.1783 |
         
     | 
| 76 | 
         
            +
            | 0.0968        | 25.81 | 12000 | 0.4237          | 0.1756 |
         
     | 
| 77 | 
         
            +
            | 0.0835        | 26.88 | 12500 | 0.4729          | 0.1781 |
         
     | 
| 78 | 
         
            +
            | 0.0919        | 27.96 | 13000 | 0.4153          | 0.1701 |
         
     | 
| 79 | 
         
            +
            | 0.0677        | 29.03 | 13500 | 0.4317          | 0.1693 |
         
     | 
| 80 | 
         
            +
            | 0.0726        | 30.11 | 14000 | 0.4380          | 0.1736 |
         
     | 
| 81 | 
         
            +
            | 0.066         | 31.18 | 14500 | 0.4384          | 0.1681 |
         
     | 
| 82 | 
         
            +
            | 0.0713        | 32.26 | 15000 | 0.4215          | 0.1629 |
         
     | 
| 83 | 
         
            +
            | 0.0605        | 33.33 | 15500 | 0.4574          | 0.1714 |
         
     | 
| 84 | 
         
            +
            | 0.0632        | 34.41 | 16000 | 0.4343          | 0.1642 |
         
     | 
| 85 | 
         
            +
            | 0.0567        | 35.48 | 16500 | 0.4231          | 0.1601 |
         
     | 
| 86 | 
         
            +
            | 0.0556        | 36.56 | 17000 | 0.4404          | 0.1667 |
         
     | 
| 87 | 
         
            +
            | 0.0426        | 37.63 | 17500 | 0.4459          | 0.1625 |
         
     | 
| 88 | 
         
            +
            | 0.0445        | 38.71 | 18000 | 0.4484          | 0.1629 |
         
     | 
| 89 | 
         
            +
            | 0.0463        | 39.78 | 18500 | 0.4508          | 0.1596 |
         
     | 
| 90 | 
         
            +
            | 0.0448        | 40.86 | 19000 | 0.4395          | 0.1605 |
         
     | 
| 91 | 
         
            +
            | 0.0434        | 41.94 | 19500 | 0.4490          | 0.1607 |
         
     | 
| 92 | 
         
            +
            | 0.0347        | 43.01 | 20000 | 0.4772          | 0.1582 |
         
     | 
| 93 | 
         
            +
            | 0.0332        | 44.09 | 20500 | 0.4729          | 0.1582 |
         
     | 
| 94 | 
         
            +
            | 0.037         | 45.16 | 21000 | 0.4559          | 0.1573 |
         
     | 
| 95 | 
         
            +
            | 0.0328        | 46.24 | 21500 | 0.4664          | 0.1560 |
         
     | 
| 96 | 
         
            +
            | 0.0366        | 47.31 | 22000 | 0.4543          | 0.1543 |
         
     | 
| 97 | 
         
            +
            | 0.0377        | 48.39 | 22500 | 0.4507          | 0.1560 |
         
     | 
| 98 | 
         
            +
            | 0.0331        | 49.46 | 23000 | 0.4567          | 0.1533 |
         
     | 
| 99 | 
         
            +
             
     | 
| 100 | 
         
            +
             
     | 
| 101 | 
         
            +
            ### Framework versions
         
     | 
| 102 | 
         
            +
             
     | 
| 103 | 
         
            +
            - Transformers 4.17.0.dev0
         
     | 
| 104 | 
         
            +
            - Pytorch 1.10.1+cu102
         
     | 
| 105 | 
         
            +
            - Datasets 1.18.2.dev0
         
     | 
| 106 | 
         
            +
            - Tokenizers 0.11.0
         
     |