|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | """ | 
					
						
						|  | Training the Whisper model for sequence to sequence speech recognition via teacher-student distillation. | 
					
						
						|  | """ | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | import logging | 
					
						
						|  | import os | 
					
						
						|  | import re | 
					
						
						|  | import shutil | 
					
						
						|  | import sys | 
					
						
						|  | import time | 
					
						
						|  | from dataclasses import dataclass, field | 
					
						
						|  | from functools import partial | 
					
						
						|  | from pathlib import Path | 
					
						
						|  | from typing import Any, Dict, List, Optional, Union | 
					
						
						|  |  | 
					
						
						|  | import datasets | 
					
						
						|  | import evaluate | 
					
						
						|  | import numpy as np | 
					
						
						|  | import torch | 
					
						
						|  | import torch.nn as nn | 
					
						
						|  | import transformers | 
					
						
						|  | from accelerate import Accelerator | 
					
						
						|  | from accelerate.logging import get_logger | 
					
						
						|  | from accelerate.utils import set_seed | 
					
						
						|  | from datasets import ( | 
					
						
						|  | DatasetDict, | 
					
						
						|  | IterableDataset, | 
					
						
						|  | IterableDatasetDict, | 
					
						
						|  | concatenate_datasets, | 
					
						
						|  | interleave_datasets, | 
					
						
						|  | load_dataset, | 
					
						
						|  | ) | 
					
						
						|  | from huggingface_hub import create_repo, get_full_repo_name, upload_folder | 
					
						
						|  | from torch.utils.data import DataLoader | 
					
						
						|  | from tqdm import tqdm | 
					
						
						|  | from transformers import ( | 
					
						
						|  | AddedToken, | 
					
						
						|  | HfArgumentParser, | 
					
						
						|  | Seq2SeqTrainingArguments, | 
					
						
						|  | WhisperConfig, | 
					
						
						|  | WhisperFeatureExtractor, | 
					
						
						|  | WhisperForConditionalGeneration, | 
					
						
						|  | WhisperProcessor, | 
					
						
						|  | WhisperTokenizerFast, | 
					
						
						|  | get_scheduler | 
					
						
						|  | ) | 
					
						
						|  | from transformers.modeling_outputs import BaseModelOutput | 
					
						
						|  | from transformers.models.whisper.english_normalizer import BasicTextNormalizer, EnglishTextNormalizer | 
					
						
						|  | from transformers.utils import check_min_version | 
					
						
						|  | from transformers.utils.versions import require_version | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | check_min_version("4.34.0.dev0") | 
					
						
						|  |  | 
					
						
						|  | require_version("datasets>=2.14.6", "To fix: `pip install --upgrade datasets`") | 
					
						
						|  |  | 
					
						
						|  | logger = get_logger(__name__) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | @dataclass | 
					
						
						|  | class ModelArguments: | 
					
						
						|  | """ | 
					
						
						|  | Arguments pertaining to which model/config/tokenizer we are going to distill from. | 
					
						
						|  | """ | 
					
						
						|  |  | 
					
						
						|  | model_name_or_path: str = field( | 
					
						
						|  | metadata={"help": "Path to pretrained Whisper model or model identifier from huggingface.co/models"} | 
					
						
						|  | ) | 
					
						
						|  | teacher_model_name_or_path: str = field( | 
					
						
						|  | metadata={"help": "Path to pretrained teacher model or model identifier from huggingface.co/models"} | 
					
						
						|  | ) | 
					
						
						|  | config_name: Optional[str] = field( | 
					
						
						|  | default=None, | 
					
						
						|  | metadata={"help": "Pretrained config name or path if not the same as model_name"}, | 
					
						
						|  | ) | 
					
						
						|  | tokenizer_name: Optional[str] = field( | 
					
						
						|  | default=None, | 
					
						
						|  | metadata={"help": "Pretrained tokenizer name or path if not the same as model_name"}, | 
					
						
						|  | ) | 
					
						
						|  | feature_extractor_name: Optional[str] = field( | 
					
						
						|  | default=None, | 
					
						
						|  | metadata={"help": "feature extractor name or path if not the same as model_name"}, | 
					
						
						|  | ) | 
					
						
						|  | cache_dir: Optional[str] = field( | 
					
						
						|  | default=None, | 
					
						
						|  | metadata={"help": "Where to store the pretrained models downloaded from huggingface.co"}, | 
					
						
						|  | ) | 
					
						
						|  | use_fast_tokenizer: bool = field( | 
					
						
						|  | default=True, | 
					
						
						|  | metadata={"help": "Whether to use one of the fast tokenizer (backed by the tokenizers library) or not."}, | 
					
						
						|  | ) | 
					
						
						|  | model_revision: str = field( | 
					
						
						|  | default="main", | 
					
						
						|  | metadata={"help": "The specific model version to use (can be a branch name, tag name or commit id)."}, | 
					
						
						|  | ) | 
					
						
						|  | subfolder: str = field( | 
					
						
						|  | default="", | 
					
						
						|  | metadata={ | 
					
						
						|  | "help": "In case the relevant files are located inside a subfolder of the model repo on huggingface.co, you can" | 
					
						
						|  | "specify the folder name here." | 
					
						
						|  | }, | 
					
						
						|  | ) | 
					
						
						|  | token: str = field( | 
					
						
						|  | default=None, | 
					
						
						|  | metadata={ | 
					
						
						|  | "help": ( | 
					
						
						|  | "The token to use as HTTP bearer authorization for remote files. If not specified, will use the token " | 
					
						
						|  | "generated when running `huggingface-cli login` (stored in `~/.huggingface`)." | 
					
						
						|  | ) | 
					
						
						|  | }, | 
					
						
						|  | ) | 
					
						
						|  | attn_implementation: Optional[str] = field( | 
					
						
						|  | default=None, | 
					
						
						|  | metadata={ | 
					
						
						|  | "help": ( | 
					
						
						|  | "Which attention implementation to use in the encoder and decoder attention layers. Can be one of:\n" | 
					
						
						|  | "1. `eager` or `None`: default Transformers attention implementation.\n" | 
					
						
						|  | "2. `sdpa`: Flash Attention through PyTorch SDPA. Requires `torch>=2.1`. Recommended for hardware where Flash Attention 2 is not supported, e.g. Turing GPUs, (T4, RTX 2080).\n" | 
					
						
						|  | "3. `flash_attn_2`: Flash Attention 2 through the Flash Attention package https://github.com/Dao-AILab/flash-attention. **Always** recommended on supported hardware (Ampere, Ada, or Hopper GPUs, e.g., A100, RTX 3090, RTX 4090, H100)." | 
					
						
						|  | ) | 
					
						
						|  | }, | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | def __post_init__(self): | 
					
						
						|  | if self.attn_implementation not in [None, "eager", "sdpa", "flash_attention_2"]: | 
					
						
						|  | raise ValueError( | 
					
						
						|  | f"Got `--attn_implementation={self.attn_implementation}`, which is an invalid attention type. Should be one of:\n" | 
					
						
						|  | "1. `eager` or `None`: default Transformers attention implementation.\n" | 
					
						
						|  | "2. `sdpa`: Flash Attention through PyTorch SDPA. Requires `torch>=2.1`. Recommended for hardware where Flash Attention 2 is not supported, e.g. Turing GPUs, (T4, RTX 2080).\n" | 
					
						
						|  | "3. `flash_attn_2`: Flash Attention 2 through the Flash Attention package https://github.com/Dao-AILab/flash-attention. **Always** recommended on supported hardware (Ampere, Ada, or Hopper GPUs, e.g., A100, RTX 3090, RTX 4090, H100)." | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | @dataclass | 
					
						
						|  | class DataTrainingArguments: | 
					
						
						|  | """ | 
					
						
						|  | Arguments pertaining to what data we are going to input our model for training and eval. | 
					
						
						|  | """ | 
					
						
						|  |  | 
					
						
						|  | train_dataset_name: str = field( | 
					
						
						|  | default=None, | 
					
						
						|  | metadata={ | 
					
						
						|  | "help": "The name of the training dataset to use (via the datasets library). Load and combine " | 
					
						
						|  | "multiple datasets by separating dataset ids by a '+' symbol. For example, to load LibriSpeech " | 
					
						
						|  | "and Common Voice, set `train_dataset_name='librispeech_asr+common_voice'`." | 
					
						
						|  | }, | 
					
						
						|  | ) | 
					
						
						|  | train_dataset_config_name: Optional[str] = field( | 
					
						
						|  | default=None, | 
					
						
						|  | metadata={ | 
					
						
						|  | "help": "The configuration name of the training dataset to use (via the datasets library). Load and combine " | 
					
						
						|  | "multiple datasets by separating dataset configs by a '+' symbol. Note that the order of the configs should " | 
					
						
						|  | "match the order of the datasets." | 
					
						
						|  | }, | 
					
						
						|  | ) | 
					
						
						|  | train_dataset_samples: str = field( | 
					
						
						|  | default=None, | 
					
						
						|  | metadata={ | 
					
						
						|  | "help": "Number of samples in each dataset when loading multiple datasets with streaming mode. " | 
					
						
						|  | "Not required when using one dataset or non-streaming mode. The sample values provide the sampling " | 
					
						
						|  | "probability for each dataset. Setting them equal to the number of sample values ensures that every " | 
					
						
						|  | "sample from every dataset is used once per epoch." | 
					
						
						|  | }, | 
					
						
						|  | ) | 
					
						
						|  | eval_dataset_name: str = field( | 
					
						
						|  | default=None, | 
					
						
						|  | metadata={ | 
					
						
						|  | "help": "The name of the evaluation dataset to use (via the datasets library). Defaults to the training " | 
					
						
						|  | "dataset name if unspecified. Load multiple evaluation datasets by separating dataset " | 
					
						
						|  | "ids by a '+' symbol." | 
					
						
						|  | }, | 
					
						
						|  | ) | 
					
						
						|  | eval_dataset_config_name: Optional[str] = field( | 
					
						
						|  | default=None, | 
					
						
						|  | metadata={ | 
					
						
						|  | "help": "The configuration name of the evaluation dataset to use (via the datasets library). Defaults to the " | 
					
						
						|  | "training dataset config name if unspecified." | 
					
						
						|  | }, | 
					
						
						|  | ) | 
					
						
						|  | dataset_cache_dir: Optional[str] = field( | 
					
						
						|  | default=None, | 
					
						
						|  | metadata={"help": "Path to cache directory for saving and loading datasets"}, | 
					
						
						|  | ) | 
					
						
						|  | overwrite_cache: bool = field( | 
					
						
						|  | default=False, | 
					
						
						|  | metadata={"help": "Overwrite the cached training and evaluation sets"}, | 
					
						
						|  | ) | 
					
						
						|  | preprocessing_num_workers: Optional[int] = field( | 
					
						
						|  | default=None, | 
					
						
						|  | metadata={"help": "The number of processes to use for the preprocessing if using non-streaming mode."}, | 
					
						
						|  | ) | 
					
						
						|  | preprocessing_batch_size: Optional[int] = field( | 
					
						
						|  | default=256, | 
					
						
						|  | metadata={"help": "Number of examples per batch provided to the `prepare_dataset` function."}, | 
					
						
						|  | ) | 
					
						
						|  | max_train_samples: Optional[int] = field( | 
					
						
						|  | default=None, | 
					
						
						|  | metadata={ | 
					
						
						|  | "help": ( | 
					
						
						|  | "For debugging purposes or quicker training, truncate the number of training examples to this value if set." | 
					
						
						|  | ) | 
					
						
						|  | }, | 
					
						
						|  | ) | 
					
						
						|  | max_eval_samples: Optional[int] = field( | 
					
						
						|  | default=None, | 
					
						
						|  | metadata={ | 
					
						
						|  | "help": ( | 
					
						
						|  | "For debugging purposes or quicker training, truncate the number of evaluation examples to this value if set." | 
					
						
						|  | ) | 
					
						
						|  | }, | 
					
						
						|  | ) | 
					
						
						|  | audio_column_name: str = field( | 
					
						
						|  | default="audio", | 
					
						
						|  | metadata={"help": "The name of the dataset column containing the audio data. Defaults to 'audio'"}, | 
					
						
						|  | ) | 
					
						
						|  | text_column_name: str = field( | 
					
						
						|  | default=None, | 
					
						
						|  | metadata={"help": "The name of the dataset column containing the text data in the training set."}, | 
					
						
						|  | ) | 
					
						
						|  | eval_text_column_name: str = field( | 
					
						
						|  | default="text", | 
					
						
						|  | metadata={"help": ("The name of the dataset column containing the text data in the evaluation set.")}, | 
					
						
						|  | ) | 
					
						
						|  | max_duration_in_seconds: float = field( | 
					
						
						|  | default=30.0, | 
					
						
						|  | metadata={"help": "Filter audio files that are longer than `max_duration_in_seconds` seconds"}, | 
					
						
						|  | ) | 
					
						
						|  | min_duration_in_seconds: float = field( | 
					
						
						|  | default=0.0, | 
					
						
						|  | metadata={"help": "Filter audio files that are shorter than `min_duration_in_seconds` seconds"}, | 
					
						
						|  | ) | 
					
						
						|  | max_label_length: int = field( | 
					
						
						|  | default=448, | 
					
						
						|  | metadata={"help": "Truncate transcriptions that are longer `max_label_length` tokens."}, | 
					
						
						|  | ) | 
					
						
						|  | pad_target_to_multiple_of: Optional[int] = field( | 
					
						
						|  | default=None, | 
					
						
						|  | metadata={ | 
					
						
						|  | "help": ( | 
					
						
						|  | "If set will pad the target sequence to a multiple of the provided" | 
					
						
						|  | " value. This is important to avoid triggering recompilations on TPU." | 
					
						
						|  | " If unspecified, will default to padding the targets to max length." | 
					
						
						|  | ) | 
					
						
						|  | }, | 
					
						
						|  | ) | 
					
						
						|  | preprocessing_only: bool = field( | 
					
						
						|  | default=False, | 
					
						
						|  | metadata={ | 
					
						
						|  | "help": ( | 
					
						
						|  | "Whether to only do data preprocessing and skip training. This is" | 
					
						
						|  | " especially useful when data preprocessing errors out in distributed" | 
					
						
						|  | " training due to timeout. In this case, one should run the" | 
					
						
						|  | " preprocessing in a non-distributed setup with" | 
					
						
						|  | " `preprocessing_only=True` so that the cached datasets can" | 
					
						
						|  | " consequently be loaded in distributed training" | 
					
						
						|  | ) | 
					
						
						|  | }, | 
					
						
						|  | ) | 
					
						
						|  | train_split_name: str = field( | 
					
						
						|  | default="train", | 
					
						
						|  | metadata={ | 
					
						
						|  | "help": "The name of the training data set split to use (via the datasets library). Defaults to 'train'" | 
					
						
						|  | }, | 
					
						
						|  | ) | 
					
						
						|  | eval_split_name: str = field( | 
					
						
						|  | default="validation", | 
					
						
						|  | metadata={ | 
					
						
						|  | "help": ( | 
					
						
						|  | "The name of the evaluation data set split to use (via the datasets library). Defaults to 'validation'" | 
					
						
						|  | ) | 
					
						
						|  | }, | 
					
						
						|  | ) | 
					
						
						|  | streaming: bool = field( | 
					
						
						|  | default=True, | 
					
						
						|  | metadata={"help": "Whether to use Datasets' streaming mode to load and pre-process the data."}, | 
					
						
						|  | ) | 
					
						
						|  | wer_threshold: float = field( | 
					
						
						|  | default=None, | 
					
						
						|  | metadata={ | 
					
						
						|  | "help": "Filter training data with Whisper transcriptions that have greater than `wer_threshold` " | 
					
						
						|  | "WER with the normalised transcriptions. This only takes effect if training on pseudo-labels targets." | 
					
						
						|  | "If `--use_pseudo_labels=False`, then no WER filtering is performed, since we train directly on the text" | 
					
						
						|  | "transcriptions." | 
					
						
						|  | }, | 
					
						
						|  | ) | 
					
						
						|  | use_pseudo_labels: bool = field( | 
					
						
						|  | default=True, | 
					
						
						|  | metadata={ | 
					
						
						|  | "help": "Whether or not to use pseudo-label transcriptions as the targets. If True, the pseudo-labels " | 
					
						
						|  | "must be in the dataset column `whisper_transcript` from the previous pseudo-labelling step. This is " | 
					
						
						|  | "not currently yet configurable." | 
					
						
						|  | }, | 
					
						
						|  | ) | 
					
						
						|  | timestamp_probability: float = field( | 
					
						
						|  | default=0.2, metadata={"help": "Probability for training on timestamped tokens if the data contains it."} | 
					
						
						|  | ) | 
					
						
						|  | condition_on_prev_probability: float = field( | 
					
						
						|  | default=0.2, metadata={"help": "Probability for conditioning on the previous text example."} | 
					
						
						|  | ) | 
					
						
						|  | return_timestamps: bool = field( | 
					
						
						|  | default=False, metadata={"help": "Whether or not to predict timestamps in the generation step."} | 
					
						
						|  | ) | 
					
						
						|  | language: str = field( | 
					
						
						|  | default=None, | 
					
						
						|  | metadata={ | 
					
						
						|  | "help": ( | 
					
						
						|  | "Language for multilingual distillation. This argument should be set for multilingual distillation " | 
					
						
						|  | "only. For English speech recognition, it should be left as `None`." | 
					
						
						|  | ) | 
					
						
						|  | }, | 
					
						
						|  | ) | 
					
						
						|  | task: str = field( | 
					
						
						|  | default="transcribe", | 
					
						
						|  | metadata={ | 
					
						
						|  | "help": "Task, either `transcribe` for speech recognition or `translate` for speech translation." | 
					
						
						|  | "This argument should be set for multilingual distillation only. For English speech recognition, it should be left as `None`." | 
					
						
						|  | }, | 
					
						
						|  | ) | 
					
						
						|  | wandb_project: str = field( | 
					
						
						|  | default="distil-whisper", | 
					
						
						|  | metadata={"help": "The name of the wandb project."}, | 
					
						
						|  | ) | 
					
						
						|  | wandb_name: str = field( | 
					
						
						|  | default=None, | 
					
						
						|  | metadata={"help": "The name of the wandb run."}, | 
					
						
						|  | ) | 
					
						
						|  | wandb_dir: str = field( | 
					
						
						|  | default="./wandb", | 
					
						
						|  | metadata={"help": "The dir where wandb metadata will be stored."}, | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | @dataclass | 
					
						
						|  | class DistillationTrainingArguments(Seq2SeqTrainingArguments): | 
					
						
						|  | freeze_encoder: Optional[bool] = field( | 
					
						
						|  | default=False, | 
					
						
						|  | metadata={ | 
					
						
						|  | "help": ( | 
					
						
						|  | "Whether to freeze the entire encoder model. Only recommended when the entire encoder has been " | 
					
						
						|  | "copied from the teacher model." | 
					
						
						|  | ) | 
					
						
						|  | }, | 
					
						
						|  | ) | 
					
						
						|  | freeze_decoder: Optional[bool] = field( | 
					
						
						|  | default=False, | 
					
						
						|  | metadata={ | 
					
						
						|  | "help": ( | 
					
						
						|  | "Whether to freeze the entire decoder model. Note that the decoder input embeddings are **not** frozen, since they are tied to the LM head." | 
					
						
						|  | ) | 
					
						
						|  | }, | 
					
						
						|  | ) | 
					
						
						|  | freeze_embed_positions: Optional[bool] = field( | 
					
						
						|  | default=False, | 
					
						
						|  | metadata={"help": "Whether to freeze the decoder embedding positions."}, | 
					
						
						|  | ) | 
					
						
						|  | temperature: Optional[float] = field( | 
					
						
						|  | default=2.0, metadata={"help": "Temperature to anneal the logits when computing the softmax."} | 
					
						
						|  | ) | 
					
						
						|  | kl_weight: Optional[float] = field( | 
					
						
						|  | default=1.0, | 
					
						
						|  | metadata={ | 
					
						
						|  | "help": ( | 
					
						
						|  | "Weighting assigned to the MSE loss in the KD formulation. MSE loss is " | 
					
						
						|  | "computed between the teacher-student hidden states and attentions." | 
					
						
						|  | ) | 
					
						
						|  | }, | 
					
						
						|  | ) | 
					
						
						|  | dtype: Optional[str] = field( | 
					
						
						|  | default="float32", | 
					
						
						|  | metadata={ | 
					
						
						|  | "help": ( | 
					
						
						|  | "The data type (dtype) in which to run training. One of `float32` (full-precision), " | 
					
						
						|  | "`float16` or `bfloat16` (both half-precision)." | 
					
						
						|  | ) | 
					
						
						|  | }, | 
					
						
						|  | ) | 
					
						
						|  | save_best_total_limit: Optional[int] = field( | 
					
						
						|  | default=1, | 
					
						
						|  | metadata={ | 
					
						
						|  | "help": ( | 
					
						
						|  | "Number of best models to be saved." | 
					
						
						|  | ) | 
					
						
						|  | } | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | @dataclass | 
					
						
						|  | class DataCollatorSpeechSeq2SeqWithPadding: | 
					
						
						|  | """ | 
					
						
						|  | Data collator that will dynamically pad the inputs received. | 
					
						
						|  | Args: | 
					
						
						|  | processor ([`Wav2Vec2Processor`]) | 
					
						
						|  | The processor used for proccessing the data. | 
					
						
						|  | decoder_start_token_id (:obj: `int`) | 
					
						
						|  | The start-of-sequence token id of the decoder. | 
					
						
						|  | decoder_prev_token_id (:obj: `int`) | 
					
						
						|  | The start-of-prompt token id of the decoder | 
					
						
						|  | input_padding (:obj:`bool`, :obj:`str` or :class:`~transformers.tokenization_utils_base.PaddingStrategy`, `optional`, defaults to :obj:`True`): | 
					
						
						|  | Select a strategy to pad the returned input sequences (according to the model's padding side and padding index) | 
					
						
						|  | among: | 
					
						
						|  | * :obj:`True` or :obj:`'longest'`: Pad to the longest sequence in the batch (or no padding if only a single | 
					
						
						|  | sequence if provided). | 
					
						
						|  | * :obj:`'max_length'`: Pad to a maximum length specified with the argument :obj:`max_length` or to the | 
					
						
						|  | maximum acceptable input length for the model if that argument is not provided. | 
					
						
						|  | * :obj:`False` or :obj:`'do_not_pad'` (default): No padding (i.e., can output a batch with sequences of | 
					
						
						|  | different lengths). | 
					
						
						|  | target_padding (:obj:`bool`, :obj:`str` or :class:`~transformers.tokenization_utils_base.PaddingStrategy`, `optional`, defaults to :obj:`True`): | 
					
						
						|  | Select a strategy to pad the returned target sequences (according to the model's padding side and padding index). | 
					
						
						|  | See above for details. | 
					
						
						|  | max_target_length (:obj:`int`, `optional`): | 
					
						
						|  | Maximum length of the ``labels`` of the returned list and optionally padding length (see above). | 
					
						
						|  | """ | 
					
						
						|  |  | 
					
						
						|  | processor: Any | 
					
						
						|  | decoder_start_token_id: int | 
					
						
						|  | decoder_prev_token_id: int | 
					
						
						|  | input_padding: Union[bool, str] = "max_length" | 
					
						
						|  | target_padding: Union[bool, str] = "max_length" | 
					
						
						|  | max_target_length: Optional[int] = None | 
					
						
						|  |  | 
					
						
						|  | def __call__(self, features: List[Dict[str, Union[List[int], np.ndarray]]]) -> Dict[str, np.ndarray]: | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | input_features = {"input_features": [feature["input_features"] for feature in features]} | 
					
						
						|  | label_features = {"input_ids": [feature["labels"] for feature in features]} | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | batch = self.processor.feature_extractor.pad( | 
					
						
						|  | input_features, | 
					
						
						|  | padding=self.input_padding, | 
					
						
						|  | return_tensors="pt", | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | labels_batch = self.processor.tokenizer.pad( | 
					
						
						|  | label_features, | 
					
						
						|  | max_length=self.max_target_length, | 
					
						
						|  | padding=self.target_padding, | 
					
						
						|  | return_tensors="pt", | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | labels = labels_batch["input_ids"] | 
					
						
						|  | decoder_input_ids = labels[:, :-1] | 
					
						
						|  | labels = labels[:, 1:] | 
					
						
						|  | labels_mask = labels_batch.attention_mask[:, 1:] | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | labels = labels.masked_fill(labels_mask.ne(1), -100) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | bos_index = torch.argmax((labels == self.decoder_start_token_id).long(), dim=1) | 
					
						
						|  | bos_index = torch.where(bos_index > 0, bos_index + 1, bos_index) | 
					
						
						|  | prompt_mask = torch.arange(labels.shape[1]) < bos_index[:, None] | 
					
						
						|  | labels = torch.where(prompt_mask, -100, labels) | 
					
						
						|  |  | 
					
						
						|  | batch["labels"] = labels | 
					
						
						|  | batch["decoder_input_ids"] = decoder_input_ids | 
					
						
						|  |  | 
					
						
						|  | return batch | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | def log_metric( | 
					
						
						|  | accelerator, | 
					
						
						|  | metrics: Dict, | 
					
						
						|  | train_time: float, | 
					
						
						|  | step: int, | 
					
						
						|  | epoch: int, | 
					
						
						|  | learning_rate: float = None, | 
					
						
						|  | prefix: str = "train", | 
					
						
						|  | ): | 
					
						
						|  | """Helper function to log all training/evaluation metrics with the correct prefixes and styling.""" | 
					
						
						|  | log_metrics = {} | 
					
						
						|  | for k, v in metrics.items(): | 
					
						
						|  | log_metrics[f"{prefix}/{k}"] = v | 
					
						
						|  | log_metrics[f"{prefix}/time"] = train_time | 
					
						
						|  | log_metrics[f"{prefix}/epoch"] = epoch | 
					
						
						|  | if learning_rate is not None: | 
					
						
						|  | log_metrics[f"{prefix}/learning_rate"] = learning_rate | 
					
						
						|  | accelerator.log(log_metrics, step=step) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | def log_pred( | 
					
						
						|  | accelerator, | 
					
						
						|  | pred_str: List[str], | 
					
						
						|  | label_str: List[str], | 
					
						
						|  | norm_pred_str: List[str], | 
					
						
						|  | norm_label_str: List[str], | 
					
						
						|  | step: int, | 
					
						
						|  | prefix: str = "eval", | 
					
						
						|  | num_lines: int = 200000, | 
					
						
						|  | ): | 
					
						
						|  | """Helper function to log target/predicted transcriptions to weights and biases (wandb).""" | 
					
						
						|  | if accelerator.is_main_process: | 
					
						
						|  | wandb_tracker = accelerator.get_tracker("wandb") | 
					
						
						|  |  | 
					
						
						|  | cur_step_pretty = f"{int(step // 1000)}k" if step > 1000 else step | 
					
						
						|  | prefix_pretty = prefix.replace("/", "-") | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | str_data = [[label_str[i], pred_str[i], norm_label_str[i], norm_pred_str[i]] for i in range(len(pred_str))] | 
					
						
						|  |  | 
					
						
						|  | wandb_tracker.log_table( | 
					
						
						|  | table_name=f"predictions/{prefix_pretty}-step-{cur_step_pretty}", | 
					
						
						|  | columns=["Target", "Pred", "Norm Target", "Norm Pred"], | 
					
						
						|  | data=str_data[:num_lines], | 
					
						
						|  | step=step, | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | str_data = np.asarray(str_data) | 
					
						
						|  | str_data_incorrect = str_data[str_data[:, -2] != str_data[:, -1]] | 
					
						
						|  |  | 
					
						
						|  | wandb_tracker.log_table( | 
					
						
						|  | table_name=f"incorrect_predictions/{prefix_pretty}-step-{cur_step_pretty}", | 
					
						
						|  | columns=["Target", "Pred", "Norm Target", "Norm Pred"], | 
					
						
						|  | data=str_data_incorrect[:num_lines], | 
					
						
						|  | step=step, | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | def convert_dataset_str_to_list( | 
					
						
						|  | dataset_names, | 
					
						
						|  | dataset_config_names, | 
					
						
						|  | splits=None, | 
					
						
						|  | text_column_names=None, | 
					
						
						|  | dataset_samples=None, | 
					
						
						|  | default_split="train", | 
					
						
						|  | ) -> List[Dict]: | 
					
						
						|  | """ | 
					
						
						|  | Given three lists of dataset names, configs and splits, this function groups the corresponding | 
					
						
						|  | names/configs/splits. Each dataset is assigned a unique dictionary with these metadata values, and the | 
					
						
						|  | function returns a list of dictionaries, one for each dataset. | 
					
						
						|  | """ | 
					
						
						|  | if isinstance(dataset_names, str): | 
					
						
						|  | dataset_names = dataset_names.split("+") | 
					
						
						|  | dataset_config_names = dataset_config_names.split("+") if dataset_config_names is not None else None | 
					
						
						|  | splits = splits.split("+") if splits is not None else None | 
					
						
						|  | text_column_names = text_column_names.split("+") if text_column_names is not None else None | 
					
						
						|  | dataset_samples = dataset_samples.split("+") if dataset_samples is not None else None | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | if dataset_config_names is not None and len(dataset_names) != len(dataset_config_names): | 
					
						
						|  | raise ValueError( | 
					
						
						|  | f"Ensure one config is passed for each dataset, got {len(dataset_names)} datasets and" | 
					
						
						|  | f" {len(dataset_config_names)} configs." | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | if splits is not None and len(splits) != len(dataset_names): | 
					
						
						|  | raise ValueError( | 
					
						
						|  | f"Ensure one split is passed for each dataset, got {len(dataset_names)} datasets and {len(splits)} splits." | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | if text_column_names is not None and len(text_column_names) != len(dataset_names): | 
					
						
						|  | raise ValueError( | 
					
						
						|  | f"Ensure one text column name is passed for each dataset, got {len(dataset_names)} datasets and" | 
					
						
						|  | f" {len(text_column_names)} text column names." | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | if dataset_samples is not None: | 
					
						
						|  | if len(dataset_samples) != len(dataset_names): | 
					
						
						|  | raise ValueError( | 
					
						
						|  | f"Ensure one sample is passed for each dataset, got {len(dataset_names)} datasets and " | 
					
						
						|  | f"{len(dataset_samples)} samples." | 
					
						
						|  | ) | 
					
						
						|  | dataset_samples = [float(ds_sample) for ds_sample in dataset_samples] | 
					
						
						|  | else: | 
					
						
						|  | dataset_samples = [None] * len(dataset_names) | 
					
						
						|  |  | 
					
						
						|  | dataset_config_names = ( | 
					
						
						|  | dataset_config_names if dataset_config_names is not None else ["default" for _ in range(len(dataset_names))] | 
					
						
						|  | ) | 
					
						
						|  | text_column_names = ( | 
					
						
						|  | text_column_names if text_column_names is not None else ["text" for _ in range(len(dataset_names))] | 
					
						
						|  | ) | 
					
						
						|  | splits = splits if splits is not None else [default_split for _ in range(len(dataset_names))] | 
					
						
						|  |  | 
					
						
						|  | dataset_names_dict = [] | 
					
						
						|  | for i, ds_name in enumerate(dataset_names): | 
					
						
						|  | dataset_names_dict.append( | 
					
						
						|  | { | 
					
						
						|  | "name": ds_name, | 
					
						
						|  | "config": dataset_config_names[i], | 
					
						
						|  | "split": splits[i], | 
					
						
						|  | "text_column_name": text_column_names[i], | 
					
						
						|  | "samples": dataset_samples[i], | 
					
						
						|  | } | 
					
						
						|  | ) | 
					
						
						|  | return dataset_names_dict | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | def load_multiple_datasets( | 
					
						
						|  | dataset_names: Union[List, str], | 
					
						
						|  | dataset_config_names: Union[List, str], | 
					
						
						|  | splits: Optional[Union[List, str]] = None, | 
					
						
						|  | text_column_names: Optional[List] = None, | 
					
						
						|  | sampling_rate: Optional[int] = 16000, | 
					
						
						|  | stopping_strategy: Optional[str] = "first_exhausted", | 
					
						
						|  | dataset_samples: Optional[Union[List, np.array]] = None, | 
					
						
						|  | streaming: Optional[bool] = True, | 
					
						
						|  | seed: Optional[int] = None, | 
					
						
						|  | accelerator: Optional[Accelerator] = None, | 
					
						
						|  | use_pseudo_labels: float = None, | 
					
						
						|  | **kwargs, | 
					
						
						|  | ) -> IterableDataset: | 
					
						
						|  | dataset_names_dict = convert_dataset_str_to_list( | 
					
						
						|  | dataset_names, dataset_config_names, splits, text_column_names, dataset_samples | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | if dataset_samples is not None: | 
					
						
						|  | dataset_samples = [ds_dict["samples"] for ds_dict in dataset_names_dict] | 
					
						
						|  | probabilities = np.array(dataset_samples) / np.sum(dataset_samples) | 
					
						
						|  | else: | 
					
						
						|  | probabilities = None | 
					
						
						|  |  | 
					
						
						|  | all_datasets = [] | 
					
						
						|  |  | 
					
						
						|  | for dataset_dict in tqdm( | 
					
						
						|  | dataset_names_dict, | 
					
						
						|  | desc="Combining datasets...", | 
					
						
						|  | disable=not accelerator.is_local_main_process if accelerator is not None else False, | 
					
						
						|  | ): | 
					
						
						|  | dataset = load_dataset( | 
					
						
						|  | dataset_dict["name"], | 
					
						
						|  | dataset_dict["config"], | 
					
						
						|  | split=dataset_dict["split"], | 
					
						
						|  | streaming=streaming, | 
					
						
						|  | **kwargs, | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | dataset = dataset.cast_column("audio", datasets.features.Audio(sampling_rate)) | 
					
						
						|  | dataset_features = dataset.features.keys() | 
					
						
						|  | columns_to_keep = {"audio", "text"} | 
					
						
						|  |  | 
					
						
						|  | if dataset_dict["text_column_name"] not in dataset_features: | 
					
						
						|  | raise ValueError( | 
					
						
						|  | f"Text column name {dataset_dict['text_column_name']} not found in dataset" | 
					
						
						|  | f" '{dataset_dict['name']}'. Make sure to set `--text_column_name` to the" | 
					
						
						|  | f" correct text column - one of {', '.join(dataset_features)}." | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | if dataset_dict["text_column_name"] != "text": | 
					
						
						|  | dataset = dataset.rename_column(dataset_dict["text_column_name"], "text") | 
					
						
						|  |  | 
					
						
						|  | if use_pseudo_labels: | 
					
						
						|  | if "whisper_transcript" not in dataset_features: | 
					
						
						|  | raise ValueError( | 
					
						
						|  | f"Pseudo-label column `whisper_transcript` not found in dataset {dataset_dict['name']}. Ensure" | 
					
						
						|  | "pseudo-labels are present in the dataset under this column name, or train directly on the text " | 
					
						
						|  | "labels by setting `--use_pseudo_labels=False` and defining the appropriate `--text_column_name`." | 
					
						
						|  | ) | 
					
						
						|  | columns_to_keep.add("whisper_transcript") | 
					
						
						|  |  | 
					
						
						|  | if "condition_on_prev" in dataset_features: | 
					
						
						|  | columns_to_keep.add("condition_on_prev") | 
					
						
						|  |  | 
					
						
						|  | dataset_features = dataset.features.keys() | 
					
						
						|  | dataset = dataset.remove_columns(set(dataset_features - columns_to_keep)) | 
					
						
						|  | all_datasets.append(dataset) | 
					
						
						|  |  | 
					
						
						|  | if len(all_datasets) == 1: | 
					
						
						|  |  | 
					
						
						|  | return all_datasets[0] | 
					
						
						|  |  | 
					
						
						|  | if streaming: | 
					
						
						|  | interleaved_dataset = interleave_datasets( | 
					
						
						|  | all_datasets, | 
					
						
						|  | stopping_strategy=stopping_strategy, | 
					
						
						|  | probabilities=probabilities, | 
					
						
						|  | seed=seed, | 
					
						
						|  | ) | 
					
						
						|  | else: | 
					
						
						|  | interleaved_dataset = concatenate_datasets(all_datasets) | 
					
						
						|  |  | 
					
						
						|  | return interleaved_dataset | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | def sorted_checkpoints(output_dir=None, checkpoint_prefix="checkpoint") -> List[str]: | 
					
						
						|  | """Helper function to sort saved checkpoints from oldest to newest.""" | 
					
						
						|  | ordering_and_checkpoint_path = [] | 
					
						
						|  |  | 
					
						
						|  | glob_checkpoints = [str(x) for x in Path(output_dir).glob(f"{checkpoint_prefix}-*") if os.path.isdir(x)] | 
					
						
						|  | glob_checkpoints = [path for path in glob_checkpoints if "val-wer" not in path] | 
					
						
						|  |  | 
					
						
						|  | for path in glob_checkpoints: | 
					
						
						|  | regex_match = re.match(f".*{checkpoint_prefix}-([0-9]+)", path) | 
					
						
						|  | if regex_match is not None and regex_match.groups() is not None: | 
					
						
						|  | ordering_and_checkpoint_path.append((int(regex_match.groups()[0]), path)) | 
					
						
						|  |  | 
					
						
						|  | checkpoints_sorted = sorted(ordering_and_checkpoint_path) | 
					
						
						|  | checkpoints_sorted = [checkpoint[1] for checkpoint in checkpoints_sorted] | 
					
						
						|  | return checkpoints_sorted | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | def sorted_best_checkpoints(output_dir=None, checkpoint_prefix="checkpoint"): | 
					
						
						|  | """Helper function to sort saved best checkpoints.""" | 
					
						
						|  | ordering_and_checkpoint_path = [] | 
					
						
						|  |  | 
					
						
						|  | glob_checkpoints = [str(x) for x in Path(output_dir).glob(f"{checkpoint_prefix}-*") if os.path.isdir(x)] | 
					
						
						|  | for path in glob_checkpoints: | 
					
						
						|  | regex_match = re.search(r"val-wer-([0-9]+\.[0-9]+)", path) | 
					
						
						|  | if regex_match is not None and regex_match.groups() is not None: | 
					
						
						|  | ordering_and_checkpoint_path.append((regex_match.groups(1), path)) | 
					
						
						|  |  | 
					
						
						|  | checkpoints_sorted = sorted(ordering_and_checkpoint_path, reverse=True) | 
					
						
						|  | checkpoints_sorted = [checkpoint[1] for checkpoint in checkpoints_sorted] | 
					
						
						|  | return checkpoints_sorted | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | def rotate_checkpoints(save_total_limit=None, output_dir=None, checkpoint_prefix="checkpoint", sorting_fn=sorted_checkpoints) -> None: | 
					
						
						|  | """Helper function to delete old checkpoints.""" | 
					
						
						|  | if save_total_limit is None or save_total_limit <= 0: | 
					
						
						|  | return | 
					
						
						|  |  | 
					
						
						|  | checkpoints_sorted = sorting_fn(output_dir=output_dir, checkpoint_prefix=checkpoint_prefix) | 
					
						
						|  | if len(checkpoints_sorted) <= save_total_limit: | 
					
						
						|  | return | 
					
						
						|  |  | 
					
						
						|  | number_of_checkpoints_to_delete = max(0, len(checkpoints_sorted) - save_total_limit) | 
					
						
						|  | checkpoints_to_be_deleted = checkpoints_sorted[:number_of_checkpoints_to_delete] | 
					
						
						|  | for checkpoint in checkpoints_to_be_deleted: | 
					
						
						|  | logger.info(f"Deleting older checkpoint [{checkpoint}].") | 
					
						
						|  | shutil.rmtree(checkpoint, ignore_errors=True) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | _RE_CHECKPOINT = re.compile(r"^checkpoint-(\d+)-epoch-(\d+)$") | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | def get_last_checkpoint(folder): | 
					
						
						|  | content = os.listdir(folder) | 
					
						
						|  | checkpoints = [ | 
					
						
						|  | path | 
					
						
						|  | for path in content | 
					
						
						|  | if _RE_CHECKPOINT.search(path) is not None and os.path.isdir(os.path.join(folder, path)) | 
					
						
						|  | ] | 
					
						
						|  | if len(checkpoints) == 0: | 
					
						
						|  | return | 
					
						
						|  | return os.path.join(folder, max(checkpoints, key=lambda x: int(_RE_CHECKPOINT.search(x).groups()[0]))) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | def get_parameter_names(model, forbidden_layer_types, forbidden_module=None): | 
					
						
						|  | """ | 
					
						
						|  | Returns the names of the model parameters that are not inside a forbidden layer or forbidden module. | 
					
						
						|  | Can be used to get a subset of parameter names for decay masks, or to exclude parameters from an optimiser | 
					
						
						|  | (e.g. if the module is frozen). | 
					
						
						|  | """ | 
					
						
						|  | result = [] | 
					
						
						|  | for name, child in model.named_children(): | 
					
						
						|  | result += [ | 
					
						
						|  | f"{name}.{n}" | 
					
						
						|  | for n in get_parameter_names(child, forbidden_layer_types, forbidden_module) | 
					
						
						|  | if not ( | 
					
						
						|  | isinstance(child, tuple(forbidden_layer_types)) | 
					
						
						|  | or (child in tuple(forbidden_module) if forbidden_module is not None else False) | 
					
						
						|  | ) | 
					
						
						|  | ] | 
					
						
						|  |  | 
					
						
						|  | result += list(model._parameters.keys()) | 
					
						
						|  | return result | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | def main(): | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | parser = HfArgumentParser((ModelArguments, DataTrainingArguments, DistillationTrainingArguments)) | 
					
						
						|  |  | 
					
						
						|  | if len(sys.argv) == 2 and sys.argv[1].endswith(".json"): | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | model_args, data_args, training_args = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1])) | 
					
						
						|  | else: | 
					
						
						|  | model_args, data_args, training_args = parser.parse_args_into_dataclasses() | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | if training_args.dtype == "float16": | 
					
						
						|  | mixed_precision = "fp16" | 
					
						
						|  | teacher_dtype = torch.float16 | 
					
						
						|  | elif training_args.dtype == "bfloat16": | 
					
						
						|  | mixed_precision = "bf16" | 
					
						
						|  | teacher_dtype = torch.bfloat16 | 
					
						
						|  | else: | 
					
						
						|  | mixed_precision = "no" | 
					
						
						|  | teacher_dtype = torch.float32 | 
					
						
						|  |  | 
					
						
						|  | accelerator = Accelerator( | 
					
						
						|  | gradient_accumulation_steps=training_args.gradient_accumulation_steps, | 
					
						
						|  | mixed_precision=mixed_precision, | 
					
						
						|  | log_with=training_args.report_to, | 
					
						
						|  | project_dir=training_args.output_dir, | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | accelerator.init_trackers( | 
					
						
						|  | project_name=data_args.wandb_project, | 
					
						
						|  | init_kwargs={ | 
					
						
						|  | "wandb": {"name": data_args.wandb_name, | 
					
						
						|  | "dir": data_args.wandb_dir} | 
					
						
						|  | } | 
					
						
						|  |  | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | logging.basicConfig( | 
					
						
						|  | format="%(asctime)s - %(levelname)s - %(name)s - %(message)s", | 
					
						
						|  | datefmt="%m/%d/%Y %H:%M:%S", | 
					
						
						|  | level=logging.INFO, | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | logger.warning( | 
					
						
						|  | f"Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}, " | 
					
						
						|  | f"distributed training: {training_args.parallel_mode.value == 'distributed'}, 16-bits training: {training_args.fp16}" | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | if accelerator.is_local_main_process: | 
					
						
						|  | datasets.utils.logging.set_verbosity_warning() | 
					
						
						|  | transformers.utils.logging.set_verbosity_info() | 
					
						
						|  | else: | 
					
						
						|  | datasets.utils.logging.set_verbosity_error() | 
					
						
						|  | transformers.utils.logging.set_verbosity_error() | 
					
						
						|  | logger.info("Training/evaluation parameters %s", training_args) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | last_checkpoint = None | 
					
						
						|  | if os.path.isdir(training_args.output_dir) and training_args.do_train and not training_args.overwrite_output_dir: | 
					
						
						|  | last_checkpoint = get_last_checkpoint(training_args.output_dir) | 
					
						
						|  | if last_checkpoint is None and len(os.listdir(training_args.output_dir)) > 0: | 
					
						
						|  | raise ValueError( | 
					
						
						|  | f"Output directory ({training_args.output_dir}) already exists and is not empty. " | 
					
						
						|  | "Use --overwrite_output_dir to overcome." | 
					
						
						|  | ) | 
					
						
						|  | elif last_checkpoint is not None and training_args.resume_from_checkpoint is None: | 
					
						
						|  | logger.info( | 
					
						
						|  | f"Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change " | 
					
						
						|  | "the `--output_dir` or add `--overwrite_output_dir` to train from scratch." | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | if accelerator.is_main_process: | 
					
						
						|  | if training_args.push_to_hub: | 
					
						
						|  | if training_args.hub_model_id is None: | 
					
						
						|  | repo_name = get_full_repo_name( | 
					
						
						|  | Path(training_args.output_dir).absolute().name, | 
					
						
						|  | token=training_args.hub_token, | 
					
						
						|  | ) | 
					
						
						|  | else: | 
					
						
						|  | repo_name = training_args.hub_model_id | 
					
						
						|  | create_repo(repo_name, exist_ok=True, token=training_args.hub_token) | 
					
						
						|  |  | 
					
						
						|  | with open(os.path.join(training_args.output_dir, ".gitignore"), "w+") as gitignore: | 
					
						
						|  | if "wandb" not in gitignore: | 
					
						
						|  | gitignore.write("wandb\n") | 
					
						
						|  | elif training_args.output_dir is not None: | 
					
						
						|  | os.makedirs(training_args.output_dir, exist_ok=True) | 
					
						
						|  | accelerator.wait_for_everyone() | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | raw_datasets = IterableDatasetDict() if data_args.streaming else DatasetDict() | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | set_seed(training_args.seed) | 
					
						
						|  |  | 
					
						
						|  | if training_args.do_train: | 
					
						
						|  | raw_datasets["train"] = load_multiple_datasets( | 
					
						
						|  | data_args.train_dataset_name, | 
					
						
						|  | data_args.train_dataset_config_name, | 
					
						
						|  | splits=data_args.train_split_name, | 
					
						
						|  | text_column_names=data_args.text_column_name, | 
					
						
						|  | use_pseudo_labels=data_args.use_pseudo_labels, | 
					
						
						|  | streaming=data_args.streaming, | 
					
						
						|  | dataset_samples=data_args.train_dataset_samples, | 
					
						
						|  | seed=training_args.seed, | 
					
						
						|  | accelerator=accelerator, | 
					
						
						|  | cache_dir=data_args.dataset_cache_dir, | 
					
						
						|  | token=model_args.token, | 
					
						
						|  | ) | 
					
						
						|  | raw_datasets_train_features = list(raw_datasets["train"].features.keys()) | 
					
						
						|  |  | 
					
						
						|  | if training_args.do_eval: | 
					
						
						|  | dataset_names_dict = convert_dataset_str_to_list( | 
					
						
						|  | data_args.eval_dataset_name if data_args.eval_dataset_name else data_args.train_dataset_name, | 
					
						
						|  | ( | 
					
						
						|  | data_args.eval_dataset_config_name | 
					
						
						|  | if data_args.eval_dataset_config_name | 
					
						
						|  | else data_args.train_dataset_config_name | 
					
						
						|  | ), | 
					
						
						|  | splits=data_args.eval_split_name, | 
					
						
						|  | text_column_names=data_args.eval_text_column_name, | 
					
						
						|  | ) | 
					
						
						|  | all_eval_splits = [] | 
					
						
						|  | if len(dataset_names_dict) == 1: | 
					
						
						|  |  | 
					
						
						|  | dataset_dict = dataset_names_dict[0] | 
					
						
						|  | all_eval_splits.append("eval") | 
					
						
						|  | raw_datasets["eval"] = load_dataset( | 
					
						
						|  | dataset_dict["name"], | 
					
						
						|  | dataset_dict["config"], | 
					
						
						|  | split=dataset_dict["split"], | 
					
						
						|  | cache_dir=data_args.dataset_cache_dir, | 
					
						
						|  | token=model_args.token, | 
					
						
						|  | streaming=data_args.streaming, | 
					
						
						|  | ) | 
					
						
						|  | if data_args.eval_text_column_name != "text": | 
					
						
						|  | raw_datasets["eval"] = raw_datasets["eval"].rename_column(data_args.eval_text_column_name, "text") | 
					
						
						|  | else: | 
					
						
						|  |  | 
					
						
						|  | for dataset_dict in dataset_names_dict: | 
					
						
						|  | if dataset_dict["name"] == "esb/diagnostic-dataset": | 
					
						
						|  |  | 
					
						
						|  | pretty_name = f"{dataset_dict['config']}-diagnostic/{dataset_dict['split']}" | 
					
						
						|  | else: | 
					
						
						|  | pretty_name = f"{dataset_dict['name'].split('/')[-1]}/{dataset_dict['split'].replace('.', '-')}" | 
					
						
						|  | all_eval_splits.append(pretty_name) | 
					
						
						|  | raw_datasets[pretty_name] = load_dataset( | 
					
						
						|  | dataset_dict["name"], | 
					
						
						|  | dataset_dict["config"], | 
					
						
						|  | split=dataset_dict["split"], | 
					
						
						|  | cache_dir=data_args.dataset_cache_dir, | 
					
						
						|  | token=model_args.token, | 
					
						
						|  | streaming=data_args.streaming, | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | if dataset_dict["text_column_name"] != "text": | 
					
						
						|  | raw_datasets[pretty_name] = raw_datasets[pretty_name].rename_column( | 
					
						
						|  | dataset_dict["text_column_name"], "text" | 
					
						
						|  | ) | 
					
						
						|  | raw_datasets[pretty_name] = raw_datasets[pretty_name].remove_columns( | 
					
						
						|  | set(raw_datasets[pretty_name].features.keys()) - {"audio", "text"} | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | if not training_args.do_train and not training_args.do_eval: | 
					
						
						|  | raise ValueError( | 
					
						
						|  | "Cannot not train and not do evaluation. At least one of training or evaluation has to be performed." | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | config = WhisperConfig.from_pretrained( | 
					
						
						|  | (model_args.config_name if model_args.config_name else model_args.model_name_or_path), | 
					
						
						|  | cache_dir=model_args.cache_dir, | 
					
						
						|  | revision=model_args.model_revision, | 
					
						
						|  | token=model_args.token, | 
					
						
						|  | ) | 
					
						
						|  | feature_extractor = WhisperFeatureExtractor.from_pretrained( | 
					
						
						|  | (model_args.feature_extractor_name if model_args.feature_extractor_name else model_args.model_name_or_path), | 
					
						
						|  | cache_dir=model_args.cache_dir, | 
					
						
						|  | revision=model_args.model_revision, | 
					
						
						|  | token=model_args.token, | 
					
						
						|  | ) | 
					
						
						|  | tokenizer = WhisperTokenizerFast.from_pretrained( | 
					
						
						|  | (model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path), | 
					
						
						|  | cache_dir=model_args.cache_dir, | 
					
						
						|  | use_fast=model_args.use_fast_tokenizer, | 
					
						
						|  | revision=model_args.model_revision, | 
					
						
						|  | token=model_args.token, | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | timestamps = [AddedToken("<|%.2f|>" % (i * 0.02), lstrip=False, rstrip=False) for i in range(1500 + 1)] | 
					
						
						|  | tokenizer.add_tokens(timestamps) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | teacher_model = WhisperForConditionalGeneration.from_pretrained( | 
					
						
						|  | model_args.teacher_model_name_or_path, | 
					
						
						|  | cache_dir=model_args.cache_dir, | 
					
						
						|  | token=model_args.token, | 
					
						
						|  | low_cpu_mem_usage=True, | 
					
						
						|  | torch_dtype=teacher_dtype, | 
					
						
						|  | attn_implementation=model_args.attn_implementation, | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | student_model = WhisperForConditionalGeneration.from_pretrained( | 
					
						
						|  | model_args.model_name_or_path, | 
					
						
						|  | config=config, | 
					
						
						|  | cache_dir=model_args.cache_dir, | 
					
						
						|  | revision=model_args.model_revision, | 
					
						
						|  | subfolder=model_args.subfolder, | 
					
						
						|  | token=model_args.token, | 
					
						
						|  | low_cpu_mem_usage=True, | 
					
						
						|  | attn_implementation=model_args.attn_implementation, | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | if student_model.config.decoder_start_token_id is None or teacher_model.config.decoder_start_token_id is None: | 
					
						
						|  | raise ValueError( | 
					
						
						|  | f"Make sure that `config.decoder_start_token_id` is correctly defined for both the " | 
					
						
						|  | f"student and teacher model. Got {student_model.config.decoder_start_token_id} for the " | 
					
						
						|  | f"student and {teacher_model.config.decoder_start_token_id} for the teacher." | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | if training_args.gradient_checkpointing: | 
					
						
						|  | student_model.gradient_checkpointing_enable() | 
					
						
						|  |  | 
					
						
						|  | def set_trainable_parameters(module, requires_grad=False): | 
					
						
						|  | for param in module.parameters(): | 
					
						
						|  | param.requires_grad = requires_grad | 
					
						
						|  | module._requires_grad = requires_grad | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | if training_args.freeze_encoder: | 
					
						
						|  | set_trainable_parameters(student_model.model.encoder, requires_grad=False) | 
					
						
						|  | student_model.model.encoder.gradient_checkpointing = False | 
					
						
						|  |  | 
					
						
						|  | if training_args.freeze_decoder: | 
					
						
						|  | set_trainable_parameters(student_model.model.decoder, requires_grad=False) | 
					
						
						|  | student_model.model.decoder.gradient_checkpointing = False | 
					
						
						|  |  | 
					
						
						|  | set_trainable_parameters(student_model.proj_out, requires_grad=True) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | if training_args.freeze_embed_positions: | 
					
						
						|  |  | 
					
						
						|  | set_trainable_parameters(student_model.model.decoder.embed_positions, requires_grad=False) | 
					
						
						|  | if student_model.model.decoder.gradient_checkpointing: | 
					
						
						|  | logger.info( | 
					
						
						|  | "Disabling gradient checkpointing in the decoder since it's incompatible with `freeze_embed_positions`." | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | logger.info( | 
					
						
						|  | f"Number of trainable parameters: {sum(p.numel() for p in student_model.parameters() if p.requires_grad):.3e}" | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | share_hidden_states = training_args.freeze_encoder and student_model.config.d_model == teacher_model.config.d_model | 
					
						
						|  | if share_hidden_states: | 
					
						
						|  |  | 
					
						
						|  | teacher_model.model.encoder = student_model.model.encoder | 
					
						
						|  |  | 
					
						
						|  | if hasattr(teacher_model.generation_config, "is_multilingual") and teacher_model.generation_config.is_multilingual: | 
					
						
						|  |  | 
					
						
						|  | is_multilingual = True | 
					
						
						|  | tokenizer.set_prefix_tokens(language=data_args.language, task=data_args.task, predict_timestamps=False) | 
					
						
						|  | student_model.generation_config.update( | 
					
						
						|  | **{ | 
					
						
						|  | "language": data_args.language, | 
					
						
						|  | "task": data_args.task, | 
					
						
						|  | } | 
					
						
						|  | ) | 
					
						
						|  | elif data_args.language is not None: | 
					
						
						|  | raise ValueError( | 
					
						
						|  | "Setting language token for an English-only checkpoint is not permitted. The language argument should " | 
					
						
						|  | "only be set for multilingual checkpoints." | 
					
						
						|  | ) | 
					
						
						|  | else: | 
					
						
						|  | is_multilingual = False | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | if accelerator.is_main_process: | 
					
						
						|  | feature_extractor.save_pretrained(training_args.output_dir) | 
					
						
						|  | tokenizer.save_pretrained(training_args.output_dir) | 
					
						
						|  |  | 
					
						
						|  | config.save_pretrained(training_args.output_dir) | 
					
						
						|  | student_model.generation_config.save_pretrained(training_args.output_dir) | 
					
						
						|  |  | 
					
						
						|  | accelerator.wait_for_everyone() | 
					
						
						|  | processor = WhisperProcessor.from_pretrained(training_args.output_dir) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | sampling_rate = feature_extractor.sampling_rate | 
					
						
						|  | raw_datasets = raw_datasets.cast_column( | 
					
						
						|  | data_args.audio_column_name, | 
					
						
						|  | datasets.features.Audio(sampling_rate=sampling_rate), | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | max_input_length = int(data_args.max_duration_in_seconds * sampling_rate) | 
					
						
						|  | min_input_length = int(data_args.min_duration_in_seconds * sampling_rate) | 
					
						
						|  | max_label_length = ( | 
					
						
						|  | data_args.max_label_length if data_args.max_label_length is not None else student_model.config.max_length | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | timestamp_probability = data_args.timestamp_probability | 
					
						
						|  | condition_on_prev_probability = data_args.condition_on_prev_probability | 
					
						
						|  | return_timestamps = data_args.return_timestamps if timestamp_probability > 0 else False | 
					
						
						|  |  | 
					
						
						|  | timestamp_ids = tokenizer.timestamp_ids() | 
					
						
						|  | timestamp_begin = tokenizer.all_special_ids[-1] | 
					
						
						|  | timestamp_position = 3 if is_multilingual else 1 | 
					
						
						|  |  | 
					
						
						|  | decoder_start_token_id = student_model.config.decoder_start_token_id | 
					
						
						|  | decoder_prev_token_id = tokenizer.all_special_ids[-3] | 
					
						
						|  | prompt_cutoff_length = max_label_length // 2 | 
					
						
						|  |  | 
					
						
						|  | num_workers = data_args.preprocessing_num_workers | 
					
						
						|  | dataloader_num_workers = training_args.dataloader_num_workers | 
					
						
						|  | prefetch_factor = training_args.dataloader_prefetch_factor | 
					
						
						|  |  | 
					
						
						|  | metric = evaluate.load("wer") | 
					
						
						|  | normalizer = ( | 
					
						
						|  | BasicTextNormalizer() | 
					
						
						|  | if data_args.language is not None | 
					
						
						|  | else EnglishTextNormalizer(tokenizer.english_spelling_normalizer) | 
					
						
						|  | ) | 
					
						
						|  | wer_threshold = data_args.wer_threshold | 
					
						
						|  | use_pseudo_labels = data_args.use_pseudo_labels | 
					
						
						|  | train_text_column_name = "whisper_transcript" if use_pseudo_labels else "text" | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | if training_args.do_train and data_args.max_train_samples is not None: | 
					
						
						|  | raw_datasets["train"] = ( | 
					
						
						|  | raw_datasets["train"].take(data_args.max_train_samples) | 
					
						
						|  | if data_args.streaming | 
					
						
						|  | else raw_datasets["train"].select(range(data_args.max_train_samples)) | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | if training_args.do_eval and data_args.max_eval_samples is not None: | 
					
						
						|  | for eval_split in all_eval_splits: | 
					
						
						|  | raw_datasets[eval_split] = ( | 
					
						
						|  | raw_datasets[eval_split].take(data_args.max_eval_samples) | 
					
						
						|  | if data_args.streaming | 
					
						
						|  | else raw_datasets[eval_split].select(range(data_args.max_eval_samples)) | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | def is_wer_in_range(ground_truth, whisper_transcript): | 
					
						
						|  | norm_ground_truth = normalizer(ground_truth) | 
					
						
						|  | if whisper_transcript is not None and whisper_transcript.upper() == whisper_transcript: | 
					
						
						|  |  | 
					
						
						|  | return False | 
					
						
						|  | elif len(norm_ground_truth) == 0 and len(normalizer(whisper_transcript)) == 0: | 
					
						
						|  | return True | 
					
						
						|  | elif len(norm_ground_truth.strip()) > 0 and whisper_transcript is not None and len(normalizer(whisper_transcript).strip()) > 0: | 
					
						
						|  | norm_whisper_transcript = normalizer(whisper_transcript) | 
					
						
						|  | wer = 100 * metric.compute(predictions=[norm_whisper_transcript], references=[norm_ground_truth]) | 
					
						
						|  | return wer < wer_threshold | 
					
						
						|  | else: | 
					
						
						|  |  | 
					
						
						|  | return False | 
					
						
						|  |  | 
					
						
						|  | filter_by_wer_threshold = partial( | 
					
						
						|  | raw_datasets["train"].filter, | 
					
						
						|  | function=is_wer_in_range, | 
					
						
						|  | input_columns=["text", "whisper_transcript"], | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | if wer_threshold is not None and use_pseudo_labels: | 
					
						
						|  | with accelerator.main_process_first(): | 
					
						
						|  | raw_datasets["train"] = ( | 
					
						
						|  | filter_by_wer_threshold(num_proc=num_workers, desc="filtering train dataset by wer") | 
					
						
						|  | if not data_args.streaming | 
					
						
						|  | else filter_by_wer_threshold() | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | def prepare_train_dataset(batch): | 
					
						
						|  | """ | 
					
						
						|  | Pre-process the raw dataset in a three stage process: | 
					
						
						|  | 1. Convert the audio arrays to log-mel spectrogram inputs | 
					
						
						|  | 2. Possibly filter the timestamp tokens from the token ids (depending on the timestamp probability) | 
					
						
						|  | 3. Possibly add prompt tokens if conditioning on previous text (depending on the conditioning probability) | 
					
						
						|  | """ | 
					
						
						|  |  | 
					
						
						|  | audio = [sample["array"] for sample in batch["audio"]] | 
					
						
						|  | inputs = feature_extractor(audio, sampling_rate=sampling_rate) | 
					
						
						|  | batch["input_features"] = inputs.input_features | 
					
						
						|  | batch["input_length"] = [len(sample) for sample in audio] | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | input_str_batched = batch[train_text_column_name] | 
					
						
						|  | condition_on_prev_batched = batch.get("condition_on_prev", len(input_str_batched) * [None]) | 
					
						
						|  |  | 
					
						
						|  | all_token_ids = [] | 
					
						
						|  | all_token_ids_unprompted = [] | 
					
						
						|  | for prev_ids, input_str in zip(condition_on_prev_batched, input_str_batched): | 
					
						
						|  | token_ids = tokenizer(input_str, add_special_tokens=not use_pseudo_labels).input_ids | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | has_timestamps = len(set(token_ids) & set(timestamp_ids)) > 0 | 
					
						
						|  | if has_timestamps: | 
					
						
						|  |  | 
					
						
						|  | predict_timestamps = bool(np.random.binomial(1, timestamp_probability)) | 
					
						
						|  | if not predict_timestamps: | 
					
						
						|  |  | 
					
						
						|  | token_ids = [token for token in token_ids if token < timestamp_begin] | 
					
						
						|  | token_ids.insert(timestamp_position, timestamp_begin) | 
					
						
						|  |  | 
					
						
						|  | all_token_ids_unprompted.append(token_ids) | 
					
						
						|  |  | 
					
						
						|  | condition_on_prev = bool(np.random.binomial(1, condition_on_prev_probability)) | 
					
						
						|  | if not condition_on_prev: | 
					
						
						|  | prev_ids = None | 
					
						
						|  | elif "condition_on_prev" not in batch and len(all_token_ids_unprompted) > 1: | 
					
						
						|  |  | 
					
						
						|  | prev_ids = all_token_ids_unprompted[-2] | 
					
						
						|  |  | 
					
						
						|  | if prev_ids is not None: | 
					
						
						|  | if has_timestamps and not predict_timestamps: | 
					
						
						|  |  | 
					
						
						|  | prev_ids = [token for token in prev_ids if token < timestamp_begin] | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | if len(prev_ids) > prompt_cutoff_length: | 
					
						
						|  | prev_ids = prev_ids[-prompt_cutoff_length + 1 :] | 
					
						
						|  | prev_ids = [decoder_prev_token_id] + prev_ids | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | if len(prev_ids + token_ids) > max_label_length: | 
					
						
						|  | trim_length = len(prev_ids + token_ids) - max_label_length + 1 | 
					
						
						|  | prev_ids = prev_ids[trim_length:] | 
					
						
						|  | prev_ids = [decoder_prev_token_id] + prev_ids | 
					
						
						|  |  | 
					
						
						|  | token_ids = prev_ids + token_ids | 
					
						
						|  |  | 
					
						
						|  | all_token_ids.append(token_ids) | 
					
						
						|  |  | 
					
						
						|  | batch["labels"] = all_token_ids | 
					
						
						|  | return batch | 
					
						
						|  |  | 
					
						
						|  | def prepare_eval_dataset(batch): | 
					
						
						|  |  | 
					
						
						|  | sample = batch["audio"] | 
					
						
						|  | inputs = feature_extractor(sample["array"], sampling_rate=sample["sampling_rate"]) | 
					
						
						|  | batch["input_features"] = inputs.input_features[0] | 
					
						
						|  | batch["input_length"] = len(sample["array"]) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | input_str = batch["text"] | 
					
						
						|  | batch["labels"] = tokenizer(input_str).input_ids | 
					
						
						|  | return batch | 
					
						
						|  |  | 
					
						
						|  | vectorized_datasets = IterableDatasetDict() if data_args.streaming else DatasetDict() | 
					
						
						|  | if training_args.do_train: | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | map_fn_train = partial( | 
					
						
						|  | raw_datasets["train"].map, | 
					
						
						|  | function=prepare_train_dataset, | 
					
						
						|  | remove_columns=raw_datasets_train_features, | 
					
						
						|  | batched=True, | 
					
						
						|  | batch_size=data_args.preprocessing_batch_size, | 
					
						
						|  | ) | 
					
						
						|  | with accelerator.main_process_first(): | 
					
						
						|  | vectorized_datasets["train"] = ( | 
					
						
						|  | map_fn_train(num_proc=num_workers, desc="preprocess train dataset") | 
					
						
						|  | if not data_args.streaming | 
					
						
						|  | else map_fn_train() | 
					
						
						|  | ) | 
					
						
						|  | if training_args.do_eval: | 
					
						
						|  | for eval_split in all_eval_splits: | 
					
						
						|  | raw_datasets_eval_features = list(raw_datasets[eval_split].features.keys()) | 
					
						
						|  | map_fn_eval = partial( | 
					
						
						|  | raw_datasets[eval_split].map, function=prepare_eval_dataset, remove_columns=raw_datasets_eval_features | 
					
						
						|  | ) | 
					
						
						|  | with accelerator.main_process_first(): | 
					
						
						|  | vectorized_datasets[eval_split] = ( | 
					
						
						|  | map_fn_eval(num_proc=num_workers, desc="preprocess eval dataset") | 
					
						
						|  | if not data_args.streaming | 
					
						
						|  | else map_fn_eval() | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | def is_audio_in_length_range(length): | 
					
						
						|  | return min_input_length < length < max_input_length | 
					
						
						|  |  | 
					
						
						|  | filter_by_audio_fn = partial( | 
					
						
						|  | vectorized_datasets.filter, function=is_audio_in_length_range, input_columns=["input_length"] | 
					
						
						|  | ) | 
					
						
						|  | with accelerator.main_process_first(): | 
					
						
						|  | vectorized_datasets = ( | 
					
						
						|  | filter_by_audio_fn(num_proc=num_workers, desc="filtering train dataset by audio length") | 
					
						
						|  | if not data_args.streaming | 
					
						
						|  | else filter_by_audio_fn() | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | def is_labels_in_length_range(labels): | 
					
						
						|  | return 0 < len(labels) <= max_label_length | 
					
						
						|  |  | 
					
						
						|  | filter_by_labels_fn = partial( | 
					
						
						|  | vectorized_datasets.filter, function=is_labels_in_length_range, input_columns=["labels"] | 
					
						
						|  | ) | 
					
						
						|  | with accelerator.main_process_first(): | 
					
						
						|  | vectorized_datasets = ( | 
					
						
						|  | filter_by_labels_fn(num_proc=num_workers, desc="filtering train dataset") | 
					
						
						|  | if not data_args.streaming | 
					
						
						|  | else filter_by_labels_fn() | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | if data_args.preprocessing_only: | 
					
						
						|  | if data_args.streaming: | 
					
						
						|  | raise ValueError( | 
					
						
						|  | "When using streaming mode, dataset pre-processing is performed on the fly, hence there is no notion" | 
					
						
						|  | "of a cached pre-processed dataset. Remove the argument `--preprocessing_only` to run pre-processing " | 
					
						
						|  | "on the fly with streaming mode." | 
					
						
						|  | ) | 
					
						
						|  | cache = {k: v.cache_files for k, v in vectorized_datasets.items()} | 
					
						
						|  | logger.info(f"Data preprocessing finished. Files cached at {cache}.") | 
					
						
						|  | return | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | def compute_metrics(preds, labels): | 
					
						
						|  |  | 
					
						
						|  | for idx in range(len(labels)): | 
					
						
						|  | labels[idx][labels[idx] == -100] = tokenizer.pad_token_id | 
					
						
						|  |  | 
					
						
						|  | pred_str = tokenizer.batch_decode(preds, skip_special_tokens=True, decode_with_timestamps=return_timestamps) | 
					
						
						|  |  | 
					
						
						|  | label_str = tokenizer.batch_decode(labels, skip_special_tokens=True) | 
					
						
						|  | wer_ortho = 100 * metric.compute(predictions=pred_str, references=label_str) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | norm_pred_str = [] | 
					
						
						|  | norm_label_str = [] | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | for pred, label in zip(pred_str, label_str): | 
					
						
						|  |  | 
					
						
						|  | normalized_pred = normalizer(pred) | 
					
						
						|  | normalized_label = normalizer(label) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | if not normalized_pred.strip(): | 
					
						
						|  | normalized_pred = "<|nocaptions|>" | 
					
						
						|  | if not normalized_label.strip(): | 
					
						
						|  | normalized_label = "<|nocaptions|>" | 
					
						
						|  |  | 
					
						
						|  | norm_pred_str.append(normalized_pred) | 
					
						
						|  | norm_label_str.append(normalized_label) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | pred_str = [pred if len(pred.strip()) > 0 else "<|nocaptions|>" for pred in pred_str] | 
					
						
						|  | label_str = [label if len(label.strip()) > 0 else "<|nocaptions|>" for label in label_str] | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | wer = 100 * metric.compute(predictions=norm_pred_str, references=norm_label_str) | 
					
						
						|  | return {"wer": wer, "wer_ortho": wer_ortho}, pred_str, label_str, norm_pred_str, norm_label_str | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | per_device_train_batch_size = int(training_args.per_device_train_batch_size) | 
					
						
						|  | train_batch_size = per_device_train_batch_size * accelerator.num_processes | 
					
						
						|  | gradient_accumulation_steps = int(training_args.gradient_accumulation_steps) | 
					
						
						|  | per_device_eval_batch_size = int(training_args.per_device_eval_batch_size) | 
					
						
						|  |  | 
					
						
						|  | if not data_args.streaming and training_args.max_steps < 0: | 
					
						
						|  | num_epochs = int(training_args.num_train_epochs) | 
					
						
						|  | steps_per_epoch = len(vectorized_datasets["train"]) // (train_batch_size * gradient_accumulation_steps) | 
					
						
						|  | total_train_steps = steps_per_epoch * num_epochs | 
					
						
						|  | elif training_args.max_steps > 0: | 
					
						
						|  | logger.info("max_steps is given, it will override any value given in num_train_epochs") | 
					
						
						|  | total_train_steps = int(training_args.max_steps) | 
					
						
						|  | if not data_args.streaming: | 
					
						
						|  | steps_per_epoch = len(vectorized_datasets["train"]) // (train_batch_size * gradient_accumulation_steps) | 
					
						
						|  | num_epochs = int(np.ceil(total_train_steps / steps_per_epoch)) | 
					
						
						|  | else: | 
					
						
						|  |  | 
					
						
						|  | num_epochs = sys.maxsize | 
					
						
						|  | steps_per_epoch = total_train_steps | 
					
						
						|  | else: | 
					
						
						|  | raise ValueError("max_steps must be specified when training with a streaming (iterable) dataset") | 
					
						
						|  |  | 
					
						
						|  | if training_args.eval_steps is None: | 
					
						
						|  | logger.info( | 
					
						
						|  | f"eval_steps is not set, evaluating at the end of {'each epoch' if not data_args.streaming else 'training'}" | 
					
						
						|  | ) | 
					
						
						|  | eval_steps = steps_per_epoch | 
					
						
						|  | else: | 
					
						
						|  | eval_steps = training_args.eval_steps | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | forbidden_module = [ | 
					
						
						|  | module | 
					
						
						|  | for module, flag in [ | 
					
						
						|  | (student_model.model.encoder, training_args.freeze_encoder), | 
					
						
						|  | (student_model.model.decoder, training_args.freeze_decoder) | 
					
						
						|  | ] | 
					
						
						|  | if flag | 
					
						
						|  | ] or None | 
					
						
						|  |  | 
					
						
						|  | decay_parameters = get_parameter_names( | 
					
						
						|  | student_model, | 
					
						
						|  | [nn.LayerNorm], | 
					
						
						|  | forbidden_module=forbidden_module, | 
					
						
						|  | ) | 
					
						
						|  | decay_parameters = [name for name in decay_parameters if "bias" not in name] | 
					
						
						|  | optimizer_grouped_parameters = [ | 
					
						
						|  | { | 
					
						
						|  | "params": [param for name, param in student_model.named_parameters() if name in decay_parameters], | 
					
						
						|  | "weight_decay": training_args.weight_decay, | 
					
						
						|  | }, | 
					
						
						|  | { | 
					
						
						|  | "params": [param for name, param in student_model.named_parameters() if name not in decay_parameters], | 
					
						
						|  | "weight_decay": 0.0, | 
					
						
						|  | }, | 
					
						
						|  | ] | 
					
						
						|  | optimizer = torch.optim.AdamW( | 
					
						
						|  | params=optimizer_grouped_parameters, | 
					
						
						|  | lr=training_args.learning_rate, | 
					
						
						|  | betas=(training_args.adam_beta1, training_args.adam_beta2), | 
					
						
						|  | eps=training_args.adam_epsilon, | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | lr_scheduler = get_scheduler( | 
					
						
						|  | name=training_args.lr_scheduler_type, | 
					
						
						|  | optimizer=optimizer, | 
					
						
						|  | num_warmup_steps=training_args.warmup_steps * accelerator.num_processes, | 
					
						
						|  | num_training_steps=total_train_steps * accelerator.num_processes, | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | data_collator = DataCollatorSpeechSeq2SeqWithPadding( | 
					
						
						|  | processor=processor, | 
					
						
						|  | decoder_start_token_id=decoder_start_token_id, | 
					
						
						|  | decoder_prev_token_id=decoder_prev_token_id, | 
					
						
						|  | input_padding="longest", | 
					
						
						|  | target_padding="max_length", | 
					
						
						|  | max_target_length=max_label_length, | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | num_beams = ( | 
					
						
						|  | training_args.generation_num_beams | 
					
						
						|  | if training_args.generation_num_beams is not None | 
					
						
						|  | else getattr(student_model.generation_config, "num_beams", 1) | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | gen_kwargs = { | 
					
						
						|  | "max_length": max_label_length, | 
					
						
						|  | "num_beams": num_beams, | 
					
						
						|  | "return_timestamps": return_timestamps, | 
					
						
						|  | } | 
					
						
						|  | if is_multilingual: | 
					
						
						|  |  | 
					
						
						|  | gen_kwargs.update( | 
					
						
						|  | { | 
					
						
						|  | "language": data_args.language, | 
					
						
						|  | "task": data_args.task, | 
					
						
						|  | } | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | student_model, teacher_model, optimizer, lr_scheduler = accelerator.prepare( | 
					
						
						|  | student_model, teacher_model, optimizer, lr_scheduler | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | def kl_divergence(target_distribution, log_predicted_distribution, labels): | 
					
						
						|  | kl_loss = nn.KLDivLoss(reduction="none") | 
					
						
						|  | divergence = kl_loss(log_predicted_distribution, target_distribution) | 
					
						
						|  |  | 
					
						
						|  | padding_mask = labels >= 0 | 
					
						
						|  | padding_mask = padding_mask.unsqueeze(-1) | 
					
						
						|  | divergence = divergence * padding_mask | 
					
						
						|  |  | 
					
						
						|  | divergence = divergence.sum() / padding_mask.sum() | 
					
						
						|  | return divergence | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | def train_step( | 
					
						
						|  | batch, | 
					
						
						|  | temperature=2.0, | 
					
						
						|  | ): | 
					
						
						|  | student_model.train() | 
					
						
						|  | teacher_model.eval() | 
					
						
						|  |  | 
					
						
						|  | student_outputs = student_model(**batch) | 
					
						
						|  | with torch.no_grad(): | 
					
						
						|  | if share_hidden_states: | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | encoder_outputs = BaseModelOutput(student_outputs.encoder_last_hidden_state.to(dtype=teacher_dtype)) | 
					
						
						|  | teacher_outputs = teacher_model(encoder_outputs=encoder_outputs, labels=batch["labels"]) | 
					
						
						|  | else: | 
					
						
						|  |  | 
					
						
						|  | teacher_outputs = teacher_model(**batch) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | ce_loss = student_outputs.loss | 
					
						
						|  |  | 
					
						
						|  | teacher_distribution = nn.functional.softmax(teacher_outputs.logits / temperature, dim=-1) | 
					
						
						|  |  | 
					
						
						|  | student_distribution = nn.functional.log_softmax(student_outputs.logits / temperature, dim=-1) | 
					
						
						|  |  | 
					
						
						|  | kl_loss = kl_divergence(teacher_distribution, student_distribution, batch["labels"]) * temperature**2 | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | loss = 0.8 * ce_loss + training_args.kl_weight * kl_loss | 
					
						
						|  | metrics = {"loss": loss, "ce_loss": ce_loss, "kl_loss": kl_loss} | 
					
						
						|  | return loss, metrics | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | def eval_step(batch): | 
					
						
						|  | student_model.eval() | 
					
						
						|  | teacher_model.eval() | 
					
						
						|  |  | 
					
						
						|  | with torch.no_grad(): | 
					
						
						|  | student_outputs = student_model(**batch) | 
					
						
						|  | if share_hidden_states: | 
					
						
						|  | encoder_outputs = BaseModelOutput(student_outputs.encoder_last_hidden_state.to(dtype=teacher_dtype)) | 
					
						
						|  | teacher_outputs = teacher_model(encoder_outputs=encoder_outputs, labels=batch["labels"]) | 
					
						
						|  | else: | 
					
						
						|  | teacher_outputs = teacher_model(**batch) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | ce_loss = student_outputs.loss | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | student_distribution = nn.functional.log_softmax(student_outputs.logits, dim=-1) | 
					
						
						|  | teacher_distribution = nn.functional.softmax(teacher_outputs.logits, dim=-1) | 
					
						
						|  |  | 
					
						
						|  | kl_loss = kl_divergence(teacher_distribution, student_distribution, batch["labels"]) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | loss = 0.8 * ce_loss + training_args.kl_weight * kl_loss | 
					
						
						|  | metrics = {"loss": loss, "ce_loss": ce_loss, "kl_loss": kl_loss} | 
					
						
						|  | return metrics | 
					
						
						|  |  | 
					
						
						|  | def generate_step(batch): | 
					
						
						|  | student_model.eval() | 
					
						
						|  | output_ids = accelerator.unwrap_model(student_model).generate(batch["input_features"], **gen_kwargs) | 
					
						
						|  | output_ids = accelerator.pad_across_processes(output_ids, dim=1, pad_index=tokenizer.pad_token_id) | 
					
						
						|  | return output_ids | 
					
						
						|  |  | 
					
						
						|  | logger.info("***** Running training *****") | 
					
						
						|  | logger.info(f"  Num examples = {total_train_steps * train_batch_size * gradient_accumulation_steps}") | 
					
						
						|  | if not data_args.streaming: | 
					
						
						|  | logger.info(f"  Num epochs = {num_epochs}") | 
					
						
						|  | logger.info("  Instantaneous batch size per device =" f" {training_args.per_device_train_batch_size}") | 
					
						
						|  | logger.info("  Gradient accumulation steps =" f" {gradient_accumulation_steps}") | 
					
						
						|  | logger.info( | 
					
						
						|  | f"  Total train batch size (w. parallel & distributed) = {train_batch_size * gradient_accumulation_steps}" | 
					
						
						|  | ) | 
					
						
						|  | logger.info(f"  Total optimization steps = {total_train_steps}") | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | train_time = 0 | 
					
						
						|  | train_start = time.time() | 
					
						
						|  | steps_trained_progress_bar = tqdm( | 
					
						
						|  | range(total_train_steps), desc="Train steps ... ", position=0, disable=not accelerator.is_local_main_process | 
					
						
						|  | ) | 
					
						
						|  | continue_training = True | 
					
						
						|  | epochs_trained = 0 | 
					
						
						|  | cur_step = 0 | 
					
						
						|  | best_val_wer = np.inf | 
					
						
						|  |  | 
					
						
						|  | checkpoint = None | 
					
						
						|  | if training_args.resume_from_checkpoint is not None: | 
					
						
						|  | checkpoint = training_args.resume_from_checkpoint | 
					
						
						|  | elif last_checkpoint is not None: | 
					
						
						|  | checkpoint = last_checkpoint | 
					
						
						|  |  | 
					
						
						|  | if checkpoint is not None: | 
					
						
						|  | accelerator.load_state(checkpoint) | 
					
						
						|  |  | 
					
						
						|  | pattern = r"checkpoint-(\d+)-epoch-(\d+)" | 
					
						
						|  | match = re.search(pattern, checkpoint) | 
					
						
						|  | cur_step = int(match.group(1)) | 
					
						
						|  | epochs_trained = int(match.group(2)) | 
					
						
						|  |  | 
					
						
						|  | logger.info("  Continuing training from checkpoint, will skip to saved global_step") | 
					
						
						|  | logger.info(f"  Continuing training from epoch {epochs_trained}") | 
					
						
						|  | logger.info(f"  Continuing training from global step {cur_step}") | 
					
						
						|  |  | 
					
						
						|  | steps_trained_progress_bar.update(cur_step) | 
					
						
						|  |  | 
					
						
						|  | for epoch in range(0, epochs_trained): | 
					
						
						|  | vectorized_datasets["train"] = vectorized_datasets["train"].shuffle(training_args.seed) | 
					
						
						|  |  | 
					
						
						|  | if not data_args.streaming and training_args.max_steps < 0: | 
					
						
						|  |  | 
					
						
						|  | resume_step = (cur_step - epochs_trained * steps_per_epoch) * gradient_accumulation_steps | 
					
						
						|  | else: | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | resume_step = None | 
					
						
						|  | vectorized_datasets["train"] = vectorized_datasets["train"].shuffle(training_args.seed) | 
					
						
						|  | else: | 
					
						
						|  | resume_step = None | 
					
						
						|  |  | 
					
						
						|  | for epoch in range(epochs_trained, num_epochs): | 
					
						
						|  | vectorized_datasets["train"] = vectorized_datasets["train"].shuffle(training_args.seed) | 
					
						
						|  | train_dataloader = DataLoader( | 
					
						
						|  | vectorized_datasets["train"], | 
					
						
						|  | collate_fn=data_collator, | 
					
						
						|  | batch_size=per_device_train_batch_size, | 
					
						
						|  | num_workers=dataloader_num_workers, | 
					
						
						|  | prefetch_factor=prefetch_factor, | 
					
						
						|  | pin_memory=training_args.dataloader_pin_memory, | 
					
						
						|  | ) | 
					
						
						|  | train_dataloader = accelerator.prepare(train_dataloader) | 
					
						
						|  | if hasattr(train_dataloader, "dataset") and isinstance(train_dataloader.dataset, IterableDataset): | 
					
						
						|  | train_dataloader.dataset.set_epoch(epoch) | 
					
						
						|  |  | 
					
						
						|  | if resume_step is not None: | 
					
						
						|  |  | 
					
						
						|  | train_dataloader = accelerator.skip_first_batches(train_dataloader, resume_step) | 
					
						
						|  | resume_step = None | 
					
						
						|  |  | 
					
						
						|  | for batch in train_dataloader: | 
					
						
						|  | with accelerator.accumulate(student_model): | 
					
						
						|  | loss, train_metric = train_step(batch, temperature=training_args.temperature) | 
					
						
						|  | accelerator.backward(loss) | 
					
						
						|  | if accelerator.sync_gradients: | 
					
						
						|  | accelerator.clip_grad_norm_(student_model.parameters(), training_args.max_grad_norm) | 
					
						
						|  | optimizer.step() | 
					
						
						|  | lr_scheduler.step() | 
					
						
						|  | optimizer.zero_grad() | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | if accelerator.sync_gradients: | 
					
						
						|  | steps_trained_progress_bar.update(1) | 
					
						
						|  | cur_step += 1 | 
					
						
						|  |  | 
					
						
						|  | if cur_step % training_args.logging_steps == 0: | 
					
						
						|  | steps_trained_progress_bar.write( | 
					
						
						|  | f"Step... ({cur_step} / {total_train_steps} | Loss:" | 
					
						
						|  | f" {train_metric['loss']}, Learning Rate:" | 
					
						
						|  | f" {lr_scheduler.get_last_lr()[0]})" | 
					
						
						|  | ) | 
					
						
						|  | log_metric( | 
					
						
						|  | accelerator, | 
					
						
						|  | metrics=train_metric, | 
					
						
						|  | learning_rate=lr_scheduler.get_last_lr()[0], | 
					
						
						|  | train_time=train_time + time.time() - train_start, | 
					
						
						|  | step=cur_step, | 
					
						
						|  | epoch=epoch, | 
					
						
						|  | prefix="train", | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | if (cur_step % training_args.save_steps == 0) or cur_step == total_train_steps: | 
					
						
						|  | intermediate_dir = os.path.join(training_args.output_dir, f"checkpoint-{cur_step}-epoch-{epoch}") | 
					
						
						|  | accelerator.save_state(output_dir=intermediate_dir) | 
					
						
						|  | feature_extractor.save_pretrained(intermediate_dir) | 
					
						
						|  | tokenizer.save_pretrained(intermediate_dir) | 
					
						
						|  | config.save_pretrained(intermediate_dir) | 
					
						
						|  | student_model.generation_config.save_pretrained(intermediate_dir) | 
					
						
						|  |  | 
					
						
						|  | accelerator.wait_for_everyone() | 
					
						
						|  | if accelerator.is_main_process: | 
					
						
						|  | rotate_checkpoints(training_args.save_total_limit, output_dir=training_args.output_dir) | 
					
						
						|  |  | 
					
						
						|  | if training_args.push_to_hub: | 
					
						
						|  | upload_folder( | 
					
						
						|  | folder_path=training_args.output_dir, | 
					
						
						|  | repo_id=repo_name, | 
					
						
						|  | repo_type="model", | 
					
						
						|  | commit_message=f"Saving train state of step {cur_step}", | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | if training_args.do_eval and (cur_step % eval_steps == 0 or cur_step == total_train_steps): | 
					
						
						|  | train_time += time.time() - train_start | 
					
						
						|  | student_model.eval() | 
					
						
						|  | wer_l, labels_l = [], [] | 
					
						
						|  |  | 
					
						
						|  | for eval_split in all_eval_splits: | 
					
						
						|  | eval_metrics = [] | 
					
						
						|  | eval_preds = [] | 
					
						
						|  | eval_labels = [] | 
					
						
						|  | eval_start = time.time() | 
					
						
						|  |  | 
					
						
						|  | validation_dataloader = DataLoader( | 
					
						
						|  | vectorized_datasets[eval_split], | 
					
						
						|  | collate_fn=data_collator, | 
					
						
						|  | batch_size=per_device_eval_batch_size, | 
					
						
						|  | drop_last=False, | 
					
						
						|  | num_workers=dataloader_num_workers, | 
					
						
						|  | prefetch_factor=prefetch_factor, | 
					
						
						|  | pin_memory=training_args.dataloader_pin_memory, | 
					
						
						|  | ) | 
					
						
						|  | validation_dataloader = accelerator.prepare(validation_dataloader) | 
					
						
						|  |  | 
					
						
						|  | for batch in tqdm( | 
					
						
						|  | validation_dataloader, | 
					
						
						|  | desc=f"Evaluating {eval_split}...", | 
					
						
						|  | position=2, | 
					
						
						|  | disable=not accelerator.is_local_main_process, | 
					
						
						|  | ): | 
					
						
						|  |  | 
					
						
						|  | eval_metric = eval_step(batch) | 
					
						
						|  | eval_metric = accelerator.gather_for_metrics(eval_metric) | 
					
						
						|  | eval_metrics.append(eval_metric) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | if training_args.predict_with_generate: | 
					
						
						|  | generated_ids = generate_step(batch) | 
					
						
						|  |  | 
					
						
						|  | generated_ids, labels = accelerator.gather_for_metrics( | 
					
						
						|  | (generated_ids, batch["labels"]) | 
					
						
						|  | ) | 
					
						
						|  | eval_preds.extend(generated_ids) | 
					
						
						|  | eval_labels.extend(labels) | 
					
						
						|  |  | 
					
						
						|  | eval_time = time.time() - eval_start | 
					
						
						|  |  | 
					
						
						|  | eval_metrics = { | 
					
						
						|  | key: torch.mean(torch.stack([d[key] for d in eval_metrics])) for key in eval_metrics[0] | 
					
						
						|  | } | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | wer_desc = "" | 
					
						
						|  | if training_args.predict_with_generate: | 
					
						
						|  | wer_metric, pred_str, label_str, norm_pred_str, norm_label_str = compute_metrics( | 
					
						
						|  | eval_preds, eval_labels | 
					
						
						|  | ) | 
					
						
						|  | eval_metrics.update(wer_metric) | 
					
						
						|  | wer_desc = " ".join([f"Eval {key}: {value} |" for key, value in wer_metric.items()]) | 
					
						
						|  | log_pred( | 
					
						
						|  | accelerator, | 
					
						
						|  | pred_str, | 
					
						
						|  | label_str, | 
					
						
						|  | norm_pred_str, | 
					
						
						|  | norm_label_str, | 
					
						
						|  | step=cur_step, | 
					
						
						|  | prefix=eval_split, | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | steps_trained_progress_bar.write( | 
					
						
						|  | f"Eval results for step ({cur_step} / {total_train_steps} | Eval Loss: {eval_metrics['loss']} |" | 
					
						
						|  | f" {wer_desc})" | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | wer_l.append(wer_metric) | 
					
						
						|  | labels_l.append(norm_label_str) | 
					
						
						|  |  | 
					
						
						|  | log_metric( | 
					
						
						|  | accelerator, | 
					
						
						|  | metrics=eval_metrics, | 
					
						
						|  | train_time=eval_time, | 
					
						
						|  | step=cur_step, | 
					
						
						|  | epoch=epoch, | 
					
						
						|  | prefix=eval_split, | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | train_start = time.time() | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | numerators = [wer['wer'] * len(labs) for wer, labs in zip(wer_l, labels_l)] | 
					
						
						|  | val_wer = sum(numerators) / sum(len(labs) for labs in labels_l) | 
					
						
						|  |  | 
					
						
						|  | if val_wer < best_val_wer: | 
					
						
						|  | intermediate_dir = os.path.join(training_args.output_dir, f"checkpoint-{cur_step}-epoch-{epoch}-val-wer-{val_wer:.3f}") | 
					
						
						|  | logger.info(f"Saving new best model, validation WER: {val_wer:.3f}") | 
					
						
						|  | accelerator.save_state(output_dir=intermediate_dir) | 
					
						
						|  | feature_extractor.save_pretrained(intermediate_dir) | 
					
						
						|  | tokenizer.save_pretrained(intermediate_dir) | 
					
						
						|  | config.save_pretrained(intermediate_dir) | 
					
						
						|  | student_model.generation_config.save_pretrained(intermediate_dir) | 
					
						
						|  |  | 
					
						
						|  | accelerator.wait_for_everyone() | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | if accelerator.is_main_process: | 
					
						
						|  | rotate_checkpoints(training_args.save_best_total_limit, output_dir=training_args.output_dir, sorting_fn=sorted_best_checkpoints) | 
					
						
						|  |  | 
					
						
						|  | accelerator.unwrap_model(student_model).save_pretrained(training_args.output_dir) | 
					
						
						|  |  | 
					
						
						|  | if training_args.push_to_hub: | 
					
						
						|  | upload_folder( | 
					
						
						|  | folder_path=training_args.output_dir, | 
					
						
						|  | repo_id=repo_name, | 
					
						
						|  | repo_type="model", | 
					
						
						|  | commit_message=f"Saving best state, step {cur_step}, val wer {val_wer:.3f}", | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | best_val_wer = val_wer | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | if cur_step == total_train_steps: | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | final_weights_dir = os.path.join(training_args.output_dir, "end-of-training-weights") | 
					
						
						|  |  | 
					
						
						|  | feature_extractor.save_pretrained(final_weights_dir) | 
					
						
						|  | tokenizer.save_pretrained(final_weights_dir) | 
					
						
						|  |  | 
					
						
						|  | config.save_pretrained(final_weights_dir) | 
					
						
						|  | student_model.generation_config.save_pretrained(final_weights_dir) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | student_model = accelerator.unwrap_model(student_model) | 
					
						
						|  | student_model.save_pretrained(final_weights_dir) | 
					
						
						|  |  | 
					
						
						|  | if training_args.push_to_hub: | 
					
						
						|  | upload_folder( | 
					
						
						|  | folder_path=training_args.output_dir, | 
					
						
						|  | repo_id=repo_name, | 
					
						
						|  | repo_type="model", | 
					
						
						|  | commit_message=f"Saving final weights of step {cur_step}", | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | continue_training = False | 
					
						
						|  | break | 
					
						
						|  |  | 
					
						
						|  | if not continue_training: | 
					
						
						|  | break | 
					
						
						|  |  | 
					
						
						|  | accelerator.end_training() | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | if __name__ == "__main__": | 
					
						
						|  | main() | 
					
						
						|  |  |