Text Generation
Transformers
GGUF
English
conversational
Mungert commited on
Commit
517973b
·
verified ·
0 Parent(s):

Super-squash history to reclaim storage

Browse files
.gitattributes ADDED
@@ -0,0 +1,79 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ *.7z filter=lfs diff=lfs merge=lfs -text
2
+ *.arrow filter=lfs diff=lfs merge=lfs -text
3
+ *.bin filter=lfs diff=lfs merge=lfs -text
4
+ *.bz2 filter=lfs diff=lfs merge=lfs -text
5
+ *.ckpt filter=lfs diff=lfs merge=lfs -text
6
+ *.ftz filter=lfs diff=lfs merge=lfs -text
7
+ *.gz filter=lfs diff=lfs merge=lfs -text
8
+ *.h5 filter=lfs diff=lfs merge=lfs -text
9
+ *.joblib filter=lfs diff=lfs merge=lfs -text
10
+ *.lfs.* filter=lfs diff=lfs merge=lfs -text
11
+ *.mlmodel filter=lfs diff=lfs merge=lfs -text
12
+ *.model filter=lfs diff=lfs merge=lfs -text
13
+ *.msgpack filter=lfs diff=lfs merge=lfs -text
14
+ *.npy filter=lfs diff=lfs merge=lfs -text
15
+ *.npz filter=lfs diff=lfs merge=lfs -text
16
+ *.onnx filter=lfs diff=lfs merge=lfs -text
17
+ *.ot filter=lfs diff=lfs merge=lfs -text
18
+ *.parquet filter=lfs diff=lfs merge=lfs -text
19
+ *.pb filter=lfs diff=lfs merge=lfs -text
20
+ *.pickle filter=lfs diff=lfs merge=lfs -text
21
+ *.pkl filter=lfs diff=lfs merge=lfs -text
22
+ *.pt filter=lfs diff=lfs merge=lfs -text
23
+ *.pth filter=lfs diff=lfs merge=lfs -text
24
+ *.rar filter=lfs diff=lfs merge=lfs -text
25
+ *.safetensors filter=lfs diff=lfs merge=lfs -text
26
+ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
27
+ *.tar.* filter=lfs diff=lfs merge=lfs -text
28
+ *.tar filter=lfs diff=lfs merge=lfs -text
29
+ *.tflite filter=lfs diff=lfs merge=lfs -text
30
+ *.tgz filter=lfs diff=lfs merge=lfs -text
31
+ *.wasm filter=lfs diff=lfs merge=lfs -text
32
+ *.xz filter=lfs diff=lfs merge=lfs -text
33
+ *.zip filter=lfs diff=lfs merge=lfs -text
34
+ *.zst filter=lfs diff=lfs merge=lfs -text
35
+ *tfevents* filter=lfs diff=lfs merge=lfs -text
36
+ DeepCoder-14B-Preview-q2_k_m.gguf filter=lfs diff=lfs merge=lfs -text
37
+ DeepCoder-14B-Preview-q3_k_m.gguf filter=lfs diff=lfs merge=lfs -text
38
+ DeepCoder-14B-Preview.imatrix filter=lfs diff=lfs merge=lfs -text
39
+ DeepCoder-14B-Preview-bf16.gguf filter=lfs diff=lfs merge=lfs -text
40
+ DeepCoder-14B-Preview-f16.gguf filter=lfs diff=lfs merge=lfs -text
41
+ DeepCoder-14B-Preview-f16_q8_0.gguf filter=lfs diff=lfs merge=lfs -text
42
+ DeepCoder-14B-Preview-bf16_q8_0.gguf filter=lfs diff=lfs merge=lfs -text
43
+ DeepCoder-14B-Preview-f16_q6_k.gguf filter=lfs diff=lfs merge=lfs -text
44
+ DeepCoder-14B-Preview-bf16_q6_k.gguf filter=lfs diff=lfs merge=lfs -text
45
+ DeepCoder-14B-Preview-f16_q4_k.gguf filter=lfs diff=lfs merge=lfs -text
46
+ DeepCoder-14B-Preview-bf16_q4_k.gguf filter=lfs diff=lfs merge=lfs -text
47
+ DeepCoder-14B-Preview-q2_k_l.gguf filter=lfs diff=lfs merge=lfs -text
48
+ DeepCoder-14B-Preview-q3_k_l.gguf filter=lfs diff=lfs merge=lfs -text
49
+ DeepCoder-14B-Preview-q4_k_l.gguf filter=lfs diff=lfs merge=lfs -text
50
+ DeepCoder-14B-Preview-q5_k_l.gguf filter=lfs diff=lfs merge=lfs -text
51
+ DeepCoder-14B-Preview-q6_k_l.gguf filter=lfs diff=lfs merge=lfs -text
52
+ DeepCoder-14B-Preview-q2_k_s.gguf filter=lfs diff=lfs merge=lfs -text
53
+ DeepCoder-14B-Preview-q3_k_s.gguf filter=lfs diff=lfs merge=lfs -text
54
+ DeepCoder-14B-Preview-q4_k_m.gguf filter=lfs diff=lfs merge=lfs -text
55
+ DeepCoder-14B-Preview-q4_k_s.gguf filter=lfs diff=lfs merge=lfs -text
56
+ DeepCoder-14B-Preview-q5_k_m.gguf filter=lfs diff=lfs merge=lfs -text
57
+ DeepCoder-14B-Preview-q5_k_s.gguf filter=lfs diff=lfs merge=lfs -text
58
+ DeepCoder-14B-Preview-q6_k_m.gguf filter=lfs diff=lfs merge=lfs -text
59
+ DeepCoder-14B-Preview-q8_0.gguf filter=lfs diff=lfs merge=lfs -text
60
+ DeepCoder-14B-Preview-q4_0.gguf filter=lfs diff=lfs merge=lfs -text
61
+ DeepCoder-14B-Preview-q4_1.gguf filter=lfs diff=lfs merge=lfs -text
62
+ DeepCoder-14B-Preview-q4_0_l.gguf filter=lfs diff=lfs merge=lfs -text
63
+ DeepCoder-14B-Preview-q4_1_l.gguf filter=lfs diff=lfs merge=lfs -text
64
+ DeepCoder-14B-Preview-q5_0.gguf filter=lfs diff=lfs merge=lfs -text
65
+ DeepCoder-14B-Preview-q5_1.gguf filter=lfs diff=lfs merge=lfs -text
66
+ DeepCoder-14B-Preview-q5_0_l.gguf filter=lfs diff=lfs merge=lfs -text
67
+ DeepCoder-14B-Preview-q5_1_l.gguf filter=lfs diff=lfs merge=lfs -text
68
+ DeepCoder-14B-Preview-iq1_s.gguf filter=lfs diff=lfs merge=lfs -text
69
+ DeepCoder-14B-Preview-iq1_m.gguf filter=lfs diff=lfs merge=lfs -text
70
+ DeepCoder-14B-Preview-iq2_xs.gguf filter=lfs diff=lfs merge=lfs -text
71
+ DeepCoder-14B-Preview-iq2_xxs.gguf filter=lfs diff=lfs merge=lfs -text
72
+ DeepCoder-14B-Preview-iq2_s.gguf filter=lfs diff=lfs merge=lfs -text
73
+ DeepCoder-14B-Preview-iq2_m.gguf filter=lfs diff=lfs merge=lfs -text
74
+ DeepCoder-14B-Preview-iq3_xs.gguf filter=lfs diff=lfs merge=lfs -text
75
+ DeepCoder-14B-Preview-iq3_xxs.gguf filter=lfs diff=lfs merge=lfs -text
76
+ DeepCoder-14B-Preview-iq3_s.gguf filter=lfs diff=lfs merge=lfs -text
77
+ DeepCoder-14B-Preview-iq3_m.gguf filter=lfs diff=lfs merge=lfs -text
78
+ DeepCoder-14B-Preview-iq4_xs.gguf filter=lfs diff=lfs merge=lfs -text
79
+ DeepCoder-14B-Preview-iq4_nl.gguf filter=lfs diff=lfs merge=lfs -text
DeepCoder-14B-Preview-bf16.gguf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:75fbb09fcba12736ee32787dbfcf020f2641b15905efa2ab0d63252ddb91fcb6
3
+ size 29547717120
DeepCoder-14B-Preview-bf16_q8_0.gguf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:2b4caad4138e47386b249e0705f756a9530f673a5b5efba9c5d849b0116f28e1
3
+ size 17161413120
DeepCoder-14B-Preview-f16_q8_0.gguf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:da87021a07533d49eead96e3daecba7d14fa7a39090cb21bb73f4b6211d6e241
3
+ size 17161413120
DeepCoder-14B-Preview-iq1_m.gguf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:84eaf739e1fa3902becbda5acebb1a4ee0cc92026c4c1b40c7f100ce6f628508
3
+ size 4530332448
DeepCoder-14B-Preview-iq1_s.gguf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:08025d898dd7f9ddf4e5108896d40014e957649250c1029846f28377aae40c13
3
+ size 4335690528
DeepCoder-14B-Preview-iq2_m.gguf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:8cf7967594ece00abc8d9743ae9a62ae73145222ce88bf0532834c5b2d47cd3e
3
+ size 6054535968
DeepCoder-14B-Preview-iq2_s.gguf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e10c873484ccbd9c0a2eb0a4f992087fa23c2dc6bdc2f01dd3969279ac4b8577
3
+ size 5795013408
DeepCoder-14B-Preview-iq2_xs.gguf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:7821781952d40dec519e5c8802cd4c385d1302cb02e0525ecde8f348616c10a7
3
+ size 5153579808
DeepCoder-14B-Preview-iq2_xxs.gguf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e6a0d970930f1590158dd3c42355303674ae50a268ed4ca0641a99e32a584245
3
+ size 4854735648
DeepCoder-14B-Preview-iq3_m.gguf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:88b2c238244327c3a9138f8ccd1d1a00a2c7f6534179be6f57ad8b413c9b2970
3
+ size 7013860128
DeepCoder-14B-Preview-iq3_s.gguf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:4da983f19619617748db11fff9374c31d2f1e64e82ad91f752b04e8cae4c752d
3
+ size 6790341408
DeepCoder-14B-Preview-iq3_xs.gguf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ea3f7ce0cf5f4c40743563e1cb10640dfdf5cac665e659b3ec624a3cd05e97bc
3
+ size 6480683808
DeepCoder-14B-Preview-iq3_xxs.gguf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:bfd55c00480fd0d565378160a563a2f590979f3b5dec5c831a9b10ee54a23b8c
3
+ size 6147433248
DeepCoder-14B-Preview-iq4_nl.gguf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:98bbf29185b027f5e3d6ae34a42826739636f001532463afc990cc072240f16f
3
+ size 8549184288
DeepCoder-14B-Preview-iq4_xs.gguf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:7e5959bdbdc2f9e4addd92e93b67d51f6d7edde243ecf943bc4840981663404f
3
+ size 8119841568
DeepCoder-14B-Preview-q2_k_m.gguf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:31bbfa51a1dcc0b7316ddc743fc8717078d05448239c427c0f3c3adb1e43a6f3
3
+ size 6153700128
DeepCoder-14B-Preview-q2_k_s.gguf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:942228027162fd8202d1ca37baec27900c8ccfcaa2e12e8b7030988623782609
3
+ size 5573583648
DeepCoder-14B-Preview-q3_k_m.gguf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:6435adc75a1c1076b2cf37d16b2402860d431bd24878f5d4add4278572e7cc44
3
+ size 7643333408
DeepCoder-14B-Preview-q3_k_s.gguf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:4a590f1e17ba624d757ec3cbbfa71aedc6bc2791bea80242dd3607b30edc9947
3
+ size 6756918048
DeepCoder-14B-Preview-q4_0.gguf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:1f14d484859504cbf9783eb27b8b698f2b9f9c8b1a1cfd9c2faad1c4853a93a4
3
+ size 8317002528
DeepCoder-14B-Preview-q4_1.gguf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f4e797813e9ebd4a81d9d640063a2775bf437def3f379f0c3db0f18d337395e3
3
+ size 9240077088
DeepCoder-14B-Preview-q4_k_m.gguf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:8c2bf10a8344578769088caf03a08b12a55cae208804b46a301c98faea0da9f9
3
+ size 9188836128
DeepCoder-14B-Preview-q4_k_s.gguf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:3aecd8c6782c424fc7159ff60a1a06f7dd8f90c4815b6ddc780c71872f7fa48c
3
+ size 8774157088
DeepCoder-14B-Preview-q5_0.gguf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e79711e152e910d7521c1af09a16391ff0686e2a024f0b7488a6df103151ca01
3
+ size 10163151648
DeepCoder-14B-Preview-q5_1.gguf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:6cd8ae4738782c88236613ee71237d576056725b3fb81f4ee0ab0a030bbad1bb
3
+ size 11086226208
DeepCoder-14B-Preview-q5_k_m.gguf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:da5b6286ce2b13ad1816d3f7e09d558d072e48552c8305311064db980a76f90c
3
+ size 10612278048
DeepCoder-14B-Preview-q5_k_s.gguf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:04daa114be346ca17b92b971614b30809c45ecf1122b4c9ebf61acb677ae990f
3
+ size 10369958688
DeepCoder-14B-Preview-q6_k_m.gguf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b7cdb8553d54a05f2154fe67a61d4e4daf41a020f5839e4217f54755b8968f31
3
+ size 12124685088
DeepCoder-14B-Preview-q8_0.gguf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:df59f043760308a6865f5d6143f293d4bade8df7a4ffe6dc449eb9f0d302787b
3
+ size 15701598720
DeepCoder-14B-Preview.imatrix ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e3389d1fccf7a6a5364c96301ee282e566c5a6037dc82ae60eeffeecee19a793
3
+ size 8563610
README.md ADDED
@@ -0,0 +1,375 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: mit
3
+ library_name: transformers
4
+ datasets:
5
+ - PrimeIntellect/verifiable-coding-problems
6
+ - likaixin/TACO-verified
7
+ - livecodebench/code_generation_lite
8
+ language:
9
+ - en
10
+ base_model:
11
+ - deepseek-ai/DeepSeek-R1-Distill-Qwen-14B
12
+ pipeline_tag: text-generation
13
+ ---
14
+
15
+ # <span style="color: #7FFF7F;">DeepCoder-14B-Preview GGUF Models</span>
16
+
17
+ ## <span style="color: #7FFF7F;">Ultra-Low-Bit Quantization with IQ-DynamicGate (1-2 bit)</span>
18
+
19
+ Our latest quantization method introduces **precision-adaptive quantization** for ultra-low-bit models (1-2 bit), with benchmark-proven improvements on **Llama-3-8B**. This approach uses layer-specific strategies to preserve accuracy while maintaining extreme memory efficiency.
20
+
21
+ ### **Benchmark Context**
22
+ All tests conducted on **Llama-3-8B-Instruct** using:
23
+ - Standard perplexity evaluation pipeline
24
+ - 2048-token context window
25
+ - Same prompt set across all quantizations
26
+
27
+ ### **Method**
28
+ - **Dynamic Precision Allocation**:
29
+ - First/Last 25% of layers → IQ4_XS (selected layers)
30
+ - Middle 50% → IQ2_XXS/IQ3_S (increase efficiency)
31
+ - **Critical Component Protection**:
32
+ - Embeddings/output layers use Q5_K
33
+ - Reduces error propagation by 38% vs standard 1-2bit
34
+
35
+ ### **Quantization Performance Comparison (Llama-3-8B)**
36
+
37
+ | Quantization | Standard PPL | DynamicGate PPL | Δ PPL | Std Size | DG Size | Δ Size | Std Speed | DG Speed |
38
+ |--------------|--------------|------------------|---------|----------|---------|--------|-----------|----------|
39
+ | IQ2_XXS | 11.30 | 9.84 | -12.9% | 2.5G | 2.6G | +0.1G | 234s | 246s |
40
+ | IQ2_XS | 11.72 | 11.63 | -0.8% | 2.7G | 2.8G | +0.1G | 242s | 246s |
41
+ | IQ2_S | 14.31 | 9.02 | -36.9% | 2.7G | 2.9G | +0.2G | 238s | 244s |
42
+ | IQ1_M | 27.46 | 15.41 | -43.9% | 2.2G | 2.5G | +0.3G | 206s | 212s |
43
+ | IQ1_S | 53.07 | 32.00 | -39.7% | 2.1G | 2.4G | +0.3G | 184s | 209s |
44
+
45
+ **Key**:
46
+ - PPL = Perplexity (lower is better)
47
+ - Δ PPL = Percentage change from standard to DynamicGate
48
+ - Speed = Inference time (CPU avx2, 2048 token context)
49
+ - Size differences reflect mixed quantization overhead
50
+
51
+ **Key Improvements:**
52
+ - 🔥 **IQ1_M** shows massive 43.9% perplexity reduction (27.46 → 15.41)
53
+ - 🚀 **IQ2_S** cuts perplexity by 36.9% while adding only 0.2GB
54
+ - ⚡ **IQ1_S** maintains 39.7% better accuracy despite 1-bit quantization
55
+
56
+ **Tradeoffs:**
57
+ - All variants have modest size increases (0.1-0.3GB)
58
+ - Inference speeds remain comparable (<5% difference)
59
+
60
+
61
+ ### **When to Use These Models**
62
+ 📌 **Fitting models into GPU VRAM**
63
+
64
+ ✔ **Memory-constrained deployments**
65
+
66
+ ✔ **Cpu and Edge Devices** where 1-2bit errors can be tolerated
67
+
68
+ ✔ **Research** into ultra-low-bit quantization
69
+
70
+
71
+ ## **Choosing the Right Model Format**
72
+
73
+ Selecting the correct model format depends on your **hardware capabilities** and **memory constraints**.
74
+
75
+ ### **BF16 (Brain Float 16) – Use if BF16 acceleration is available**
76
+ - A 16-bit floating-point format designed for **faster computation** while retaining good precision.
77
+ - Provides **similar dynamic range** as FP32 but with **lower memory usage**.
78
+ - Recommended if your hardware supports **BF16 acceleration** (check your device's specs).
79
+ - Ideal for **high-performance inference** with **reduced memory footprint** compared to FP32.
80
+
81
+ 📌 **Use BF16 if:**
82
+ ✔ Your hardware has native **BF16 support** (e.g., newer GPUs, TPUs).
83
+ ✔ You want **higher precision** while saving memory.
84
+ ✔ You plan to **requantize** the model into another format.
85
+
86
+ 📌 **Avoid BF16 if:**
87
+ ❌ Your hardware does **not** support BF16 (it may fall back to FP32 and run slower).
88
+ ❌ You need compatibility with older devices that lack BF16 optimization.
89
+
90
+ ---
91
+
92
+ ### **F16 (Float 16) – More widely supported than BF16**
93
+ - A 16-bit floating-point **high precision** but with less of range of values than BF16.
94
+ - Works on most devices with **FP16 acceleration support** (including many GPUs and some CPUs).
95
+ - Slightly lower numerical precision than BF16 but generally sufficient for inference.
96
+
97
+ 📌 **Use F16 if:**
98
+ ✔ Your hardware supports **FP16** but **not BF16**.
99
+ ✔ You need a **balance between speed, memory usage, and accuracy**.
100
+ ✔ You are running on a **GPU** or another device optimized for FP16 computations.
101
+
102
+ 📌 **Avoid F16 if:**
103
+ ❌ Your device lacks **native FP16 support** (it may run slower than expected).
104
+ ❌ You have memory limitations.
105
+
106
+ ---
107
+
108
+ ### **Quantized Models (Q4_K, Q6_K, Q8, etc.) – For CPU & Low-VRAM Inference**
109
+ Quantization reduces model size and memory usage while maintaining as much accuracy as possible.
110
+ - **Lower-bit models (Q4_K)** → **Best for minimal memory usage**, may have lower precision.
111
+ - **Higher-bit models (Q6_K, Q8_0)** → **Better accuracy**, requires more memory.
112
+
113
+ 📌 **Use Quantized Models if:**
114
+ ✔ You are running inference on a **CPU** and need an optimized model.
115
+ ✔ Your device has **low VRAM** and cannot load full-precision models.
116
+ ✔ You want to reduce **memory footprint** while keeping reasonable accuracy.
117
+
118
+ 📌 **Avoid Quantized Models if:**
119
+ ❌ You need **maximum accuracy** (full-precision models are better for this).
120
+ ❌ Your hardware has enough VRAM for higher-precision formats (BF16/F16).
121
+
122
+ ---
123
+
124
+ ### **Very Low-Bit Quantization (IQ3_XS, IQ3_S, IQ3_M, Q4_K, Q4_0)**
125
+ These models are optimized for **extreme memory efficiency**, making them ideal for **low-power devices** or **large-scale deployments** where memory is a critical constraint.
126
+
127
+ - **IQ3_XS**: Ultra-low-bit quantization (3-bit) with **extreme memory efficiency**.
128
+ - **Use case**: Best for **ultra-low-memory devices** where even Q4_K is too large.
129
+ - **Trade-off**: Lower accuracy compared to higher-bit quantizations.
130
+
131
+ - **IQ3_S**: Small block size for **maximum memory efficiency**.
132
+ - **Use case**: Best for **low-memory devices** where **IQ3_XS** is too aggressive.
133
+
134
+ - **IQ3_M**: Medium block size for better accuracy than **IQ3_S**.
135
+ - **Use case**: Suitable for **low-memory devices** where **IQ3_S** is too limiting.
136
+
137
+ - **Q4_K**: 4-bit quantization with **block-wise optimization** for better accuracy.
138
+ - **Use case**: Best for **low-memory devices** where **Q6_K** is too large.
139
+
140
+ - **Q4_0**: Pure 4-bit quantization, optimized for **ARM devices**.
141
+ - **Use case**: Best for **ARM-based devices** or **low-memory environments**.
142
+
143
+ ---
144
+
145
+ ### **Summary Table: Model Format Selection**
146
+
147
+ | Model Format | Precision | Memory Usage | Device Requirements | Best Use Case |
148
+ |--------------|------------|---------------|----------------------|---------------|
149
+ | **BF16** | Highest | High | BF16-supported GPU/CPUs | High-speed inference with reduced memory |
150
+ | **F16** | High | High | FP16-supported devices | GPU inference when BF16 isn't available |
151
+ | **Q4_K** | Medium Low | Low | CPU or Low-VRAM devices | Best for memory-constrained environments |
152
+ | **Q6_K** | Medium | Moderate | CPU with more memory | Better accuracy while still being quantized |
153
+ | **Q8_0** | High | Moderate | CPU or GPU with enough VRAM | Best accuracy among quantized models |
154
+ | **IQ3_XS** | Very Low | Very Low | Ultra-low-memory devices | Extreme memory efficiency and low accuracy |
155
+ | **Q4_0** | Low | Low | ARM or low-memory devices | llama.cpp can optimize for ARM devices |
156
+
157
+ ---
158
+
159
+ ## **Included Files & Details**
160
+
161
+ ### `DeepCoder-14B-Preview-bf16.gguf`
162
+ - Model weights preserved in **BF16**.
163
+ - Use this if you want to **requantize** the model into a different format.
164
+ - Best if your device supports **BF16 acceleration**.
165
+
166
+ ### `DeepCoder-14B-Preview-f16.gguf`
167
+ - Model weights stored in **F16**.
168
+ - Use if your device supports **FP16**, especially if BF16 is not available.
169
+
170
+ ### `DeepCoder-14B-Preview-bf16-q8_0.gguf`
171
+ - **Output & embeddings** remain in **BF16**.
172
+ - All other layers quantized to **Q8_0**.
173
+ - Use if your device supports **BF16** and you want a quantized version.
174
+
175
+ ### `DeepCoder-14B-Preview-f16-q8_0.gguf`
176
+ - **Output & embeddings** remain in **F16**.
177
+ - All other layers quantized to **Q8_0**.
178
+
179
+ ### `DeepCoder-14B-Preview-q4_k.gguf`
180
+ - **Output & embeddings** quantized to **Q8_0**.
181
+ - All other layers quantized to **Q4_K**.
182
+ - Good for **CPU inference** with limited memory.
183
+
184
+ ### `DeepCoder-14B-Preview-q4_k_s.gguf`
185
+ - Smallest **Q4_K** variant, using less memory at the cost of accuracy.
186
+ - Best for **very low-memory setups**.
187
+
188
+ ### `DeepCoder-14B-Preview-q6_k.gguf`
189
+ - **Output & embeddings** quantized to **Q8_0**.
190
+ - All other layers quantized to **Q6_K** .
191
+
192
+ ### `DeepCoder-14B-Preview-q8_0.gguf`
193
+ - Fully **Q8** quantized model for better accuracy.
194
+ - Requires **more memory** but offers higher precision.
195
+
196
+ ### `DeepCoder-14B-Preview-iq3_xs.gguf`
197
+ - **IQ3_XS** quantization, optimized for **extreme memory efficiency**.
198
+ - Best for **ultra-low-memory devices**.
199
+
200
+ ### `DeepCoder-14B-Preview-iq3_m.gguf`
201
+ - **IQ3_M** quantization, offering a **medium block size** for better accuracy.
202
+ - Suitable for **low-memory devices**.
203
+
204
+ ### `DeepCoder-14B-Preview-q4_0.gguf`
205
+ - Pure **Q4_0** quantization, optimized for **ARM devices**.
206
+ - Best for **low-memory environments**.
207
+ - Prefer IQ4_NL for better accuracy.
208
+
209
+ # <span id="testllm" style="color: #7F7FFF;">🚀 If you find these models useful</span>
210
+ ❤ **Please click "Like" if you find this useful!**
211
+ Help me test my **AI-Powered Network Monitor Assistant** with **quantum-ready security checks**:
212
+ 👉 [Quantum Network Monitor](https://readyforquantum.com/dashboard)
213
+
214
+ 💬 **How to test**:
215
+ 1. Click the **chat icon** (bottom right on any page)
216
+ 2. Choose an **AI assistant type**:
217
+ - `TurboLLM` (GPT-4-mini)
218
+ - `FreeLLM` (Open-source)
219
+ - `TestLLM` (Experimental CPU-only)
220
+
221
+ ### **What I’m Testing**
222
+ I’m pushing the limits of **small open-source models for AI network monitoring**, specifically:
223
+ - **Function calling** against live network services
224
+ - **How small can a model go** while still handling:
225
+ - Automated **Nmap scans**
226
+ - **Quantum-readiness checks**
227
+ - **Metasploit integration**
228
+
229
+ 🟡 **TestLLM** – Current experimental model (llama.cpp on 6 CPU threads):
230
+ - ✅ **Zero-configuration setup**
231
+ - ⏳ 30s load time (slow inference but **no API costs**)
232
+ - 🔧 **Help wanted!** If you’re into **edge-device AI**, let’s collaborate!
233
+
234
+ ### **Other Assistants**
235
+ 🟢 **TurboLLM** – Uses **gpt-4-mini** for:
236
+ - **Real-time network diagnostics**
237
+ - **Automated penetration testing** (Nmap/Metasploit)
238
+ - 🔑 Get more tokens by [downloading our Quantum Network Monitor Agent](https://readyforquantum.com/download/?utm_source=huggingface&utm_medium=referral&utm_campaign=huggingface_repo_readme)
239
+
240
+ 🔵 **HugLLM** – Open-source models (≈8B params):
241
+ - **2x more tokens** than TurboLLM
242
+ - **AI-powered log analysis**
243
+ - 🌐 Runs on Hugging Face Inference API
244
+
245
+ ### 💡 **Example AI Commands to Test**:
246
+ 1. `"Give me info on my websites SSL certificate"`
247
+ 2. `"Check if my server is using quantum safe encyption for communication"`
248
+ 3. `"Run a quick Nmap vulnerability test"`
249
+ 4. '"Create a cmd processor to .. (what ever you want)" Note you need to install a Quantum Network Monitor Agent to run the .net code from. This is a very flexible and powerful feature. Use with caution!
250
+
251
+ ### Final word
252
+ I fund the servers to create the models files, run the Quantum Network Monitor Service and Pay for Inference from Novita and OpenAI all from my own pocket. All of the code for creating the models and the work I have done with Quantum Network Monitor is [open source](https://github.com/Mungert69). Feel free to use what you find useful. Please support my work and consider [buying me a coffee](https://www.buymeacoffee.com/mahadeva) .
253
+ This will help me pay for the services and increase the token limits for everyone.
254
+
255
+ Thank you :)
256
+
257
+
258
+
259
+ <div align="center">
260
+ <span style="font-family: default; font-size: 1.5em;">DeepCoder-14B-Preview</span>
261
+ <div>
262
+ 🚀 Democratizing Reinforcement Learning for LLMs (RLLM) 🌟
263
+ </div>
264
+ </div>
265
+ <br>
266
+ <div align="center" style="line-height: 1;">
267
+ <a href="https://github.com/agentica-project/rllm" style="margin: 2px;">
268
+ <img alt="Code" src="https://img.shields.io/badge/RLLM-000000?style=for-the-badge&logo=github&logoColor=000&logoColor=white" style="display: inline-block; vertical-align: middle;"/>
269
+ </a>
270
+ <a href="https://pretty-radio-b75.notion.site/DeepCoder-A-Fully-Open-Source-14B-Coder-at-O3-mini-Level-1cf81902c14680b3bee5eb349a512a51" target="_blank" style="margin: 2px;">
271
+ <img alt="Blog" src="https://img.shields.io/badge/Notion-%23000000.svg?style=for-the-badge&logo=notion&logoColor=white" style="display: inline-block; vertical-align: middle;"/>
272
+ </a>
273
+ <a href="https://x.com/Agentica_" style="margin: 2px;">
274
+ <img alt="X.ai" src="https://img.shields.io/badge/Agentica-white?style=for-the-badge&logo=X&logoColor=000&color=000&labelColor=white" style="display: inline-block; vertical-align: middle;"/>
275
+ </a>
276
+ <a href="https://huggingface.co/agentica-org" style="margin: 2px;">
277
+ <img alt="Hugging Face" src="https://img.shields.io/badge/Agentica-fcd022?style=for-the-badge&logo=huggingface&logoColor=000&labelColor" style="display: inline-block; vertical-align: middle;"/>
278
+ </a>
279
+ <a href="https://www.together.ai" style="margin: 2px;">
280
+ <img alt="Together AI" src="https://img.shields.io/badge/-Together_AI%20-white?style=for-the-badge&logo=data%3Aimage%2Fpng%3Bbase64%2CiVBORw0KGgoAAAANSUhEUgAAAUAAAAFACAMAAAD6TlWYAAAC7lBMVEUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAPb%2F8Pb%2F8Pb%2F8Pb%2F8Pb%2F8Pb%2F8Pb%2F8Pb%2F8Pb%2F8Pb%2F8Pb%2F8Pb%2F8Pb%2F8Pb%2F8Pb%2F8Pb%2F8Pb%2F8Pb%2F8Pb%2F8Pb%2F8Pb%2F8Pb%2F8Pb%2F8Pb%2F8Pb%2F8Pb%2F8Pb%2F8Pb%2F8Pb%2F8Pb%2F8Pb%2F8Pb%2F8Pb%2F8Pb%2F8Pb%2F8Pb%2F8Pb%2F8Pb%2F8Pb%2F8Pb%2F8Pb%2F8Pb%2F8Pb%2F8Pb%2F8Pb%2F8Pb%2F8Pb%2F8Pb%2F8Pb%2F8Pb%2F8Pb%2F8Pb%2F8Pb%2F8Pb%2F8Pb%2F8Pb%2F8Pb%2F8Pb%2F8Pb%2F8Pb%2F8Pb%2F8Pb%2F8Pb%2F8Pb%2F8Pb%2F8Pb%2F8Pb%2F8Pb%2F8Pb%2F8Pb%2F8Pb%2F8Pb%2F8Pb%2F8Pb%2F8Pb%2F8Pb%2F8Pb%2F8Pb%2F8Pb%2F8Pb%2F8Pb%2F8Pb%2F8Pb%2F8Pb%2F8Pb%2F8Pb%2F8Pb%2F8Pb%2F8Pb%2F8Pb%2F8Pb%2F8Pb%2F8Pb%2F8Pb%2F8Pb%2F8Pb%2F8Pb%2F8Pb%2F8Pb%2F8Pb%2F8Pb%2F8Pb%2F8Pb%2F8Pb%2F8Pb%2F8Pb%2F8Pb%2F8Pb%2F8Pb%2F8Pb%2F8Pb%2F8Pb%2F8Pb%2F8Pb%2F8Pb%2F8Pb%2F8Pb%2F8Pb%2F8Pb%2F8Pb%2F8Pb%2F8Pb%2F8Pb%2F8Pb%2F8Pb%2F8Pb%2F8Pb%2F8Pb%2F8Pb%2F8Pb%2F8Pb%2F8Pb%2F8Pb%2F8AAAAPb%2F8Pb%2F8Pb%2F8Pb%2F8Pb%2F8Pb%2F8Pb%2F8Pb%2F8Pb%2F8Pb%2F8Pb%2F8Pb%2F8Pb%2F8Pb%2F8Pb%2F8Pb%2F8Pb%2F8Pb%2F8Pb%2F8Pb%2F8Pb%2F8Pb%2F8Pb%2F8Pb%2F8Pb%2F8Pb%2F8Pb%2F8Pb%2F8Pb%2F8Pb%2F8Pb%2F8Pb%2F8Pb%2F8Pb%2F8Pb%2F8Pb%2F8Pb%2F8Pb%2F8Pb%2F8Pb%2F8Pb%2F8Pb%2F8Pb%2F8Pb%2F8Pb%2F8Pb%2F8Pb%2F8Pb%2F8Pb%2F8Pb%2F8Pb%2F8Pb%2F8Pb%2F8Pb%2F8Pb%2F8Pb%2F8Pb%2F8Pb%2F8Pb%2F8Pb%2F8Pb%2F8Pb%2F8Pb%2F8Pb%2F8Pb%2F8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADIBDt6AAAA%2BnRSTlMAAiQEKgcdKQwiHBMUzrtSUEmjhmZGH96yv8n1ey7nL3y1U%2FZfCaIo1WFg1NrcsHYrA2%2Fv80J%2BMeilnpefqKw%2B64%2BQlSbYZGVnBGkCV%2BxW8XJube6WJ9kZF9bSzBALRynPQfLhIjvwyBEAXOTLp3o%2FJA9Y9%2F7%2F9FEKDhIVFo4GHkVzjGz8icrHzY39iHR1i0M8Jj14LLZUvb7DxMXGoQEFeQcgSBOHaPvm4uOdRLMMqcDTLbcII0sNuVn4TKaRd6RKIeDd37Svra6xuLpaW17lXUAlHh8WGxUPIS4JGQoFECMsBg4gFwsRJRIrCC0oAycaFC8NMDIzMRgBsVt9rwAAD25JREFUeNrs3QVzG0kWB%2FA3ikHhZeYwk3LMbF7GcBasOGw9hb3MzLyKw8zMzMx2rsokhySNY2mmR1N4xXV3a7sHuzWu%2BX2Ef3XPG%2Br3wOVyuVwul8vlcrlcLpfL5XK5dOlXOHTIvLnb27Xd%2FasBvrt9A%2B7r1bbdTTffcmuXwhzgTYwk6q%2BHr2RWlcclRYqXV2VeCV%2Bvr4mIkCJKZ83uc9NLC0fMD%2BD%2FCswfMfLtzh%2FeelsJcKJW19SG66KSTP6fLEXrwrU11Srw5Z8zbuzePcUBbFyg%2BPY7Pv%2Bs0A%2Bsid7ayiqFNEWp8iS9Ir%2F0Cl957bkRAaQLFLz15sBBfpbpJc7FJKKFFGuV4JJh6N573g6idr7vP%2F8iC9iI1NZJRDupLnlRBbaW3XjTfQHUJ3D8d68MBtsJiTNRold5uEYAdibkHgqiESMefGi9zfFVeCRihOS5LLJafV99XYxGddgwabKt8SmEyEQ%2FmRDlSoUA9gsNvKMDmhE8MC4L7OFtSYmPFmFlAmzm%2F9tfH0Oz8v6yFmxQ3SpOiY8eYTwjHew0%2BB9%2FD6B5ga4dLd%2FHQus0SnzaIrzWWgDb9P19MVqjw01dwFLpYYVYQymLgD1Kjj6J1umaHwLLqJfpy0%2FHIryqgg2mvetDKxXMnQMWEa9LxEpSqxZguS%2B%2BfA%2Bt9cZBi7ZxeqVMX376FqEnAtbyv7ISrTfspB%2FM82bq3r70BNMSYKV%2Bo4rQDiPzc8Csy1Fih%2BhVsE7o0cfQHnn%2FygJz6uNEJtaTSfy8ChYpnelDuxQ8HAIT1LOS8fwoCSq1FiVYcs%2FdaJ%2FgNhMJqrWKqfwoCSYtSTA08260U%2FBh47v4LDU%2F%2FgnmPOJDexX86ycwpp6yf80neB7M8o96DO2Wl2%2Bw%2FlLrh%2FlKYroW31qE9ht5EgzwRs3nR00wmgBTVq1EFtp2Ad0imdbkR0kwLQImTP8S2eg9B3QSKwkbHhPPxSUzAsjGe3P1luLrMmGklQpGjfIhKwU6C8llibBJUCaS4UKy6klkp0cX0CE9zcr8KAlei4Ahy36PLHXuBJqpYcJSmQBG3LIJWerQETS7qhCWlHowoMvfka2Va0Gjaus3MGUTp4NuWY8ja3%2FuB9q0IqydBt1eeQxZ%2B9MfQRNvnLAWT%2BiuIEuRvT9MBg3UlkQmbMmkUgB9cjsge8EbQIMLCmFPuQy6DPoGeVi9HqgED5EJazL5VAQ9Nm5CHjq0B6oKhZCUX4LrNyAfSycDhVBJZMKeTK4IoN26IPJRsAQoEhLhQ7kAmoV%2Bjbwspt0LniF8yKRMBa1%2B%2BSvkZVFfaFIkSngpvwha%2FQL56QNNqiX8%2FBs0mnMX8vPtBGiCWEf4iYmgzey7kZ8Rw6EJXonwo9SANn9GnuZCE84RnlqBJm3aIk8vFUKjxBjhKbMFaDHQhzy9%2BAI06pJEeJIS%2FGuwBn1M1WD%2BdXjNauSrdwk0Qq0kfHlUoFs7Evnq9TI0orqK8BVN1%2FIcvAn56vAKNCKhEDruz8NjkbdXOV4CKZJA1W8M8vbjT9CwMOGtDKjmjEbefpgCDRLqCB33p7kvipC3kc83UkOihLdohF5DfMjbiBf43UZTSPQq8vobyNsbudCgyzLhTT4PNK8hpmoZPkv4awU0y5G%2F1%2Fj90WG%2BDK9ATNX7mDDh71OgWYn83RHi9yRMkQY0I5G%2FOydDA4RPCX9RoMlD%2Fu6a0mCAMcJfHGh8yN%2BwqdAAMZPwJwFNB%2BRv5TRoQIs0wp%2FiiAB7TG%2B2Abor0L0GmiO5VdicuHsfaE7UfRIxJ80Rz8Kdnfss7L6NoShz8vvAWsLfOUe8kZ7o5DfSm1Pgm8gnTv4msqoIzXC%2FyrUZjWa434XdPxOoRZjiHjTD%2FTcGNm9Cg9y%2Fs9z%2FAymi1e4fqqZ4VPcfaQZnlQYGkacXP3H6X%2FrT2qIZ7jkR%2BAvy9L5jTyq5Z%2BUolBpHnNYc5PDTmubrsHtemOeJ9aJmcWI9tAV5%2BQ29Z4Kc%2Bj0TYHOQVwl5pVl07YD1h9EMt28MHOHUueihZtK5CArvRB4OTWkuvbNgYjGyF5wEGlQ4oXsbrF%2BK7O2fDBoIPPoHegQndLAc14w6WELot8jaX5pVD1Xo8iSy1WM8nzbcFMZbcf%2BLcR%2Fp7qBZayf0kYZly5GlzpOd3Mmcfy%2F9rl1AhwjTXvoXwaATDKc55Dp6mgP%2FeSLvZ4E%2B55wwTwSmr0Y2Djp6og3%2FmUrDhqbuTKWLYMqQ42i%2FkcNTdqpXeQ2Y4z82AO2Wl8txrpz5AkLRr38Q7TUiOydlJxueBfNCYzugnYKvOn62JkXpA3YmGPy8xPnTXanzhYP27d8PSvjPFzafH0Wov12VJC87ZSdcS2dVsEy%2FE8fRDgtznTFj3Tz%2FrT3QesOGO2bKv3mrVr%2BH1nrjjqFgiUilTGRr8%2FNEwHLTZ%2FisLR9vzgGLiOckYiWpVQuwQcmonmidZ3JDYBn1chohslXL79pVFWzh%2F2L5JrRG8fahYKlIWCHWUMoiYJtl%2F3wygOYFunabDBYTWmtdhJTlVy%2BAjfxPPP4YmpW3dTzYID0jTo%2BQEl88Ix1sFlqytAOacfe%2Bk1lgD29LxXiEMiFKZUIF%2By3L%2F6YYjSpu134w2EaouEKPsNH4rlwWgI0JEzcE0Qjfl19NAVsJFR6JGCF5LovAzrId2%2B8LoD6BBT8OGQy2E2rCUaJXebhGALZC9z%2FwUhC18%2F0wc1UWsBFJ1klEOymWvKgCe%2F7CW999xxdAusCI0R99PMgP7IiJczFJY3qtEiLw8tOckw88uKs40FR4xXuWzvzjVD%2BwJnqTlVUKaYpS5Ul6ReCsdOeOmVveKgq%2Bh%2F%2FvveCiu7Zvmz2rFDhRq2tqw7GoJJP%2FJ0vRWFmyplqF1NBv0KmTJz7fumX1d889%2B8yTzzz73Ldfbtm6bdS48RNygDcx3Xu1NqPMUxdLS7uWlhar85RlJK9600VIOf6c0mWDpj391NNtBg0uyfFDSlEF8T%2Ft3eFyqjwTwPGNiKq9eq%2BtqiCeoxZVEcRW4mK%2Bvc%2F5%2Bk7bBSDZOJPfFfwHWkEMG%2B%2BfXChwHMdxHMdxHMdxHMdxHMdxHIeV4yiR%2FyOUS6tHfBxP88Vse74N%2F7mdt7PF%2FHT8EFakbYg0XupvMZ%2Fddt%2F%2Ber27zebFX%2BXSfpQfD%2BMLsX7iMp4fc460%2BfgiqbSD1jSCGH1WXAV1v32OhOm0O1Yh9aUR0sNUYnVyekjBEH9eL%2B2mIY2gilmGdWXvhTKQNnpvkDYrBJgjNluJTchtIDSnBY3TNgLMUEGvbL4Qvhco3WkPbOS%2FNAEGjMay1bsEMjyCJsewXVo5HoFuH5P2b7OsJh9a0har1mn3tmkElXTzPlU%2FUd2nDfnTKH53b%2FTN%2FI7TZp2l7X3QZNPlO6X9jb1pJwUa5J8SuyQ%2Fc2vTFjl0zu%2F8vfrH2O8obdx52jaFjmmZ7HAdQQeOVw1pwxF0StNskd0GWtvsUIfsBB3SNt3m%2FgUtva1402jEfCXm%2BUBLjWkHBZ2gJ3zxHcG51JhWdnQENc%2BYk3O2vz%2F6CEJrBqYcyi9o6E172hJaMjJn876BRjYG0k7QiqFJr7tRo7SdgbSsgBaMzRoe%2BlCbfzWTlkILxqZdj%2FPaaWM0Y%2BtBUwbnrT8%2BoaZPY2kLBc2Ynfi%2FgVo2BtNO0JDRPSf6PtTgm0y7pNCI2KNJewWVqZnZNAH1md93J4HKEsNpb1Abw85P%2FQ%2Bo6GNoOs2H%2BgZo2gQqWqBpA6iNY%2Fe7EVRyXNm%2FMR%2FP%2FotjBRWokCFtK6AOrh1AA6ggkBxpG6hFnImzzLUFKNv2uOec5Q9Qw3kO7N%2BgmT7LjB81asuU1hNQXSyRhyyAULClxVDdHh%2FI4YEzIMzY0vZQWZQhlyyFX6V8aasIqnoinwP86oB8nlBRfkM%2Btxx%2BIaZWpNGf03zkCH4xYk0r7PiuTljALz6R0wQqya%2FI6ZrTHy78acS%2FCSd5hB8dmdNGdlyDCQfiGmz7dVhtkddWWZvWU0D72CGv3Qf84O%2BFP40Wl8irLOAHBXtaDLQDoq0fgnPk9gTaHrnt4Qcz5Bba8T2OcBPwLUGnWXAnmGbILfP5Lm%2BELLX3WSp9v3q0IC0GytcDuT1O8K2TBWlLq58kEJfhOfJbACVEfhN7z20IlDPy2xM3WIymQBkiv57i%2ByZM6ANlh%2FymAr6hpshvB5QVoqW3q%2BKK%2FO5AkchvmMM38iHyk0ApkV%2Ffg294feRXugPoDiCr0n0GtiPdVbid%2BwvfB4op8svcN5F2%2Bu67cDvTV34aM0F%2B4Ss%2FDzzYcW4JSwse%2Byav%2FETa4t9ERhakBS%2F9q5wFaRH%2F6kDaNbf3d2EPXuAyvLd30UQItCdyO9i7bOf5EquzYnvTgpdeH8iflvlAUz3kZf8KVcs%2FBJ%2F2rl1cQxWFvUvhR8xpBVThDfnvAu28SR16UMkEOS3sfdQxgGri0tp%2Fk0Lac39l6T%2FKLbd2AfLVg4rW9t7rPy24BtOiFXJZRda%2BTL%2F6A1Wp0N7BBHu2tFBBZUGJPGRs7QPfMrB9cBExnIV7pM1ZQA0nrvFA9qYlUEc%2B5R9QZddYrymdxn%2Bey5O9g%2BUSqEf0rB3SJ7YMaT0BNRUMEywLa9NkDHWpdzRtYO9413cFtaUXw6NyL76VA4abj%2BL%2BMjys%2BcvaEdePJTQhxmhSKGqkhWjSWEAj0cXagfWpybRdBA0lpbktExJrN5oo36ApNUFTJqpm2gJNGShozOuhGT3P2rSzBy1EfSMbF%2FVTqC01lBZBK%2FHK2q2zisxA2iqGlhKpf%2FO2pGHaXXuafOPfGZKMLJeMO0MSaXNoTz1LvRtYPhXftqlE2lpBB9SayOQ6fgDqqTXtk07jzKSPH00dpL60tbJ9h%2Bb2%2BzODWt7tSKM34tZhlUBrSaYn7Q06Ffc1bKXfj6EDhQ1ptOhcP5OI7EXQibTXedo5gs55gxK7VE68ztImstu0gQcaqGSH%2BOjqHF8S1WXapcO03ZsCPaLxA7tRhhF0Kg1L7MZjHIE24os%2B05X%2B%2FL6ErWm7pQCd0ndJdxKN93cfNPDf763T5CwFzVTcK%2BnOXxrLXqE0pRXbtmmxAv3EaUp3%2Ftg4PQlL0x7TRIAZeXIusYnyfMo1p50apyU5mCOCcIV1rcJA2J9mivqzvpZYXXldR8pQWlQ77Y8CBnk8GFYLlcNBnJtNmwwlVlH%2Bl%2BYBG69Yn7Py98Ksty48lrQemXY2kEZRfvAMr5l84P97yOwaPgNfWZq2NpZG86JgPhlP%2B9ldlo9S3rP%2BdDyZB5FnRdqygzTHcRzHcRzHcRzHcRzHcZz%2FAbyvLkVmYcs9AAAAAElFTkSuQmCC&link=https%3A%2F%2Fwww.together.ai" style="display: inline-block; vertical-align: middle;"/>
281
+ </a>
282
+ </div>
283
+ </div>
284
+ </div>
285
+
286
+ ## DeepCoder Overview
287
+ DeepCoder-14B-Preview is a code reasoning LLM fine-tuned from DeepSeek-R1-Distilled-Qwen-14B using distributed reinforcement learning (RL) to scale up to long context lengths. The model achieves 60.6% Pass@1 accuracy on LiveCodeBench v5 (8/1/24-2/1/25), representing a 8% improvement over the base model (53%) and achieving similar performance to OpenAI's o3-mini with just 14B parameters.
288
+
289
+ <div style="margin: 0 auto;">
290
+ <img src="https://cdn-uploads.huggingface.co/production/uploads/654037be97949fd2304aab7f/r3-vzkItOCrMf1qldW0Mj.png" style="width: 100%;" />
291
+ </div>
292
+
293
+ ## Data
294
+ Our training dataset consists of approximately 24K unique problem-tests pairs compiled from:
295
+ - Taco-Verified
296
+ - PrimeIntellect SYNTHETIC-1
297
+ - LiveCodeBench v5 (5/1/23-7/31/24)
298
+
299
+ ## Training Recipe
300
+
301
+ Our training recipe relies on an improved version of GRPO (GRPO+) and iterative context lengthening, introduced in DeepScaleR.
302
+
303
+ ### GRPO+
304
+
305
+ We enhance the original GRPO algorithm with insights from DAPO to enable more stable training:
306
+
307
+ - **Offline Difficulty Filtering:** DAPO employs online dynamic sampling, discarding both entirely correct and entirely incorrect samples on the fly. While this helps maintain a more stable effective batch size, it introduces significant runtime overhead due to rejection sampling. Instead, we perform offline difficulty filtering on a subset of coding problems to ensure the training dataset remains within a suitable difficulty range.
308
+ - **No Entropy Loss:** We observed that including an entropy loss term often led to instability, with entropy growing exponentially and ultimately collapsing training. To mitigate this, we eliminate the entropy loss entirely.
309
+ - **No KL Loss:** Eliminating KL loss prevents the LLM from staying within trust region of the original SFT model. This removal also obviates the need to compute log probabilities for the reference policy, thereby accelerating training.
310
+ - **Overlong Filtering** **(from DAPO):** To preserve long-context reasoning, we mask the loss for truncated sequences. This technique enables DeepCoder to generalize to 64K-context inference despite being trained with a 32K context.
311
+ - **Clip High (from DAPO):** By increasing the upper bound in GRPO/PPO’s surrogate loss, we encourage more exploration and more stable entropy.
312
+
313
+ ### Iterative Context Lengthening
314
+
315
+ Our original `Deepscaler-1.5B-Preview` scaled long context training from 8K→16K→24K, achieving 33→38→43% on AIME respectively. Similarly, `Deepcoder-14B-Preview` is trained on 16K→32K, achieving 54→58% on LiveCodeBench (v5). `DeepCoder-14B-Preview` successfully generalizes to longer contexts when evaluated at 64K context, reaching 60.6%.
316
+
317
+ DeepCoder generalizes better to long contexts than the base distilled model, due to DAPO's overlong filtering. However, it's longer responses are often truncated when the max length is capped at 16K, which can lower its scores.
318
+
319
+ | **Model** | **16K** | **32K** | **64K** |
320
+ | --- | --- | --- | --- |
321
+ | **DeepCoder-14B-Preview** | 45.6 | 57.9 | 60.6 |
322
+ | **DeepSeek-R1-Distill-Qwen-14B** | 50.2 | 53.0 | 53.0 |
323
+
324
+ A more detailed description of the training recipe can be found in our [blog post](https://pretty-radio-b75.notion.site/DeepCoder-A-Fully-Open-Source-14B-Coder-at-O3-mini-Level-1cf81902c14680b3bee5eb349a512a51).
325
+
326
+ ## Evaluation
327
+
328
+ We evaluate `Deepcoder-14B-Preview` on various coding benchmarks, including LiveCodeBench (LCBv5), Codeforces, and HumanEval+.
329
+
330
+ | **Model** | LCB (v5)(8/1/24-2/1/25) | Codeforces Rating | Codeforces Percentile | HumanEval+ |
331
+ | --- | --- | --- | --- | --- |
332
+ | **DeepCoder-14B-Preview (ours)** | ***60.6*** | ***1936*** | ***95.3*** | ***92.6*** |
333
+ | **DeepSeek-R1-Distill-Qwen-14B** | 53.0 | 1791 | 92.7 | 92.0 |
334
+ | **O1-2024-12-17 (Low)** | 59.5 | **1991** | **96.1** | 90.8 |
335
+ | **O3-Mini-2025-1-31 (Low)** | **60.9** | 1918 | 94.9 | 92.6 |
336
+ | **O1-Preview** | 42.7 | 1658 | 88.5 | 89 |
337
+ | **Deepseek-R1** | 62.8 | 1948 | 95.4 | 92.6 |
338
+ | **Llama-4-Behemoth** | 49.4 | - | - | - |
339
+
340
+ ## Serving DeepCoder
341
+ Our model can be served using popular high-performance inference systems:
342
+ - vLLM
343
+ - Hugging Face Text Generation Inference (TGI)
344
+ - SGLang
345
+ - TensorRT-LLM
346
+
347
+ All these systems support the OpenAI Chat Completions API format.
348
+
349
+ ### Usage Recommendations
350
+ Our usage recommendations are similar to those of R1 and R1 Distill series:
351
+ 1. Avoid adding a system prompt; all instructions should be contained within the user prompt.
352
+ 2. `temperature = 0.6`
353
+ 3. `top_p = 0.95`
354
+ 4. This model performs best with `max_tokens` set to at least `64000`
355
+
356
+ ## License
357
+ This project is released under the MIT License, reflecting our commitment to open and accessible AI development.
358
+ We believe in democratizing AI technology by making our work freely available for anyone to use, modify, and build upon.
359
+ This permissive license ensures that researchers, developers, and enthusiasts worldwide can leverage and extend our work without restrictions, fostering innovation and collaboration in the AI community.
360
+
361
+ ## Acknowledgement
362
+ - Our training experiments are powered by our heavily modified fork of [Verl](https://github.com/agentica-project/verl), an open-source post-training library.
363
+ - Our model is trained on top of [`DeepSeek-R1-Distill-Qwen-14B`](https://huggingface.co/deepseek-ai/DeepSeek-R1-Distill-Qwen-14B).
364
+ - Our work is done as part of [Berkeley Sky Computing Lab](https://skycomputing.berkeley.edu/) and [Berkeley AI Research](https://bair.berkeley.edu/).
365
+
366
+ ## Citation
367
+ ```bibtex
368
+ @misc{deepcoder2025,
369
+ title={DeepCoder: A Fully Open-Source 14B Coder at O3-mini Level},
370
+ author={Michael Luo, Sijun Tan, Roy Huang, Ameen Patel, Alpay Ariyak, Qingyang Wu, Xiaoxiang Shi, Rachel Xin, Colin Cai, Maurice Weber, Ce Zhang, Li Erran Li, Raluca Ada Popa, Ion Stoica},
371
+ howpublished={\url{https://pretty-radio-b75.notion.site/DeepCoder-A-Fully-Open-Source-14B-Coder-at-O3-mini-Level-1cf81902c14680b3bee5eb349a512a51}},
372
+ note={Notion Blog},
373
+ year={2025}
374
+ }
375
+ ```