Mr-FineTuner commited on
Commit
1946095
·
verified ·
1 Parent(s): 5123af0

Fine-tuned mixedbread-ai/mxbai-embed-large-v1 for CEFR classification

Browse files
1_Pooling/config.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "word_embedding_dimension": 1024,
3
+ "pooling_mode_cls_token": true,
4
+ "pooling_mode_mean_tokens": false,
5
+ "pooling_mode_max_tokens": false,
6
+ "pooling_mode_mean_sqrt_len_tokens": false,
7
+ "pooling_mode_weightedmean_tokens": false,
8
+ "pooling_mode_lasttoken": false,
9
+ "include_prompt": true
10
+ }
README.md ADDED
@@ -0,0 +1,405 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ tags:
3
+ - sentence-transformers
4
+ - sentence-similarity
5
+ - feature-extraction
6
+ - generated_from_trainer
7
+ - dataset_size:14356
8
+ - loss:MultipleNegativesRankingLoss
9
+ base_model: mixedbread-ai/mxbai-embed-large-v1
10
+ widget:
11
+ - source_sentence: Pear trees are usually productive for 50 to 75 years though some
12
+ still produce fruit after 100 years .
13
+ sentences:
14
+ - In the late 1950s , he studied cinema in France .
15
+ - Pear trees are usually productive for 50 to 75 years though some still produce
16
+ fruit after 100 years .
17
+ - A recording medium is a physical material that holds data expressed in any of
18
+ the existing recording formats .
19
+ - source_sentence: On poor , dry soils there are tropical heathlands .
20
+ sentences:
21
+ - On poor , dry soils there are tropical heathlands .
22
+ - There are plans to build a new library at my school .
23
+ - These are forest birds that tend to feed on insects at or near the ground .
24
+ - source_sentence: According to Statistics Canada , the county has a total area of
25
+ 2004.44 km2 .
26
+ sentences:
27
+ - In 2018 , there are eleven senators holding ministerial positions and the head
28
+ of state , the First mayor .
29
+ - According to Statistics Canada , the county has a total area of 2004.44 km2 .
30
+ - There are some common ways used to stretch piercings , of different origins and
31
+ useful for different people .
32
+ - source_sentence: Oll , who was married , fell into severe depressions after he divorced
33
+ .
34
+ sentences:
35
+ - Tide pools are a home for hardy organisms such as sea stars , mussels and clams
36
+ .
37
+ - Endgames can be studied according to the types of pieces that remain on board
38
+ .
39
+ - Oll , who was married , fell into severe depressions after he divorced .
40
+ - source_sentence: She often shared her boots with her sister .
41
+ sentences:
42
+ - She often shared her boots with her sister .
43
+ - Many of the Greek city -states also had a god or goddess associated with that
44
+ city .
45
+ - Until 1 April 2010 the Departments were as follows .
46
+ pipeline_tag: sentence-similarity
47
+ library_name: sentence-transformers
48
+ metrics:
49
+ - pearson_cosine
50
+ - spearman_cosine
51
+ model-index:
52
+ - name: SentenceTransformer based on mixedbread-ai/mxbai-embed-large-v1
53
+ results:
54
+ - task:
55
+ type: semantic-similarity
56
+ name: Semantic Similarity
57
+ dataset:
58
+ name: dev
59
+ type: dev
60
+ metrics:
61
+ - type: pearson_cosine
62
+ value: 0.17054715938835457
63
+ name: Pearson Cosine
64
+ - type: spearman_cosine
65
+ value: 0.1539031839706612
66
+ name: Spearman Cosine
67
+ ---
68
+
69
+ # SentenceTransformer based on mixedbread-ai/mxbai-embed-large-v1
70
+
71
+ This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [mixedbread-ai/mxbai-embed-large-v1](https://huggingface.co/mixedbread-ai/mxbai-embed-large-v1). It maps sentences & paragraphs to a 1024-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
72
+
73
+ ## Model Details
74
+
75
+ ### Model Description
76
+ - **Model Type:** Sentence Transformer
77
+ - **Base model:** [mixedbread-ai/mxbai-embed-large-v1](https://huggingface.co/mixedbread-ai/mxbai-embed-large-v1) <!-- at revision db9d1fe0f31addb4978201b2bf3e577f3f8900d2 -->
78
+ - **Maximum Sequence Length:** 512 tokens
79
+ - **Output Dimensionality:** 1024 dimensions
80
+ - **Similarity Function:** Cosine Similarity
81
+ <!-- - **Training Dataset:** Unknown -->
82
+ <!-- - **Language:** Unknown -->
83
+ <!-- - **License:** Unknown -->
84
+
85
+ ### Model Sources
86
+
87
+ - **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
88
+ - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
89
+ - **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
90
+
91
+ ### Full Model Architecture
92
+
93
+ ```
94
+ SentenceTransformer(
95
+ (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel
96
+ (1): Pooling({'word_embedding_dimension': 1024, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
97
+ )
98
+ ```
99
+
100
+ ## Usage
101
+
102
+ ### Direct Usage (Sentence Transformers)
103
+
104
+ First install the Sentence Transformers library:
105
+
106
+ ```bash
107
+ pip install -U sentence-transformers
108
+ ```
109
+
110
+ Then you can load this model and run inference.
111
+ ```python
112
+ from sentence_transformers import SentenceTransformer
113
+
114
+ # Download from the 🤗 Hub
115
+ model = SentenceTransformer("Mr-FineTuner/Eval_03_Final_1")
116
+ # Run inference
117
+ sentences = [
118
+ 'She often shared her boots with her sister .',
119
+ 'She often shared her boots with her sister .',
120
+ 'Until 1 April 2010 the Departments were as follows .',
121
+ ]
122
+ embeddings = model.encode(sentences)
123
+ print(embeddings.shape)
124
+ # [3, 1024]
125
+
126
+ # Get the similarity scores for the embeddings
127
+ similarities = model.similarity(embeddings, embeddings)
128
+ print(similarities.shape)
129
+ # [3, 3]
130
+ ```
131
+
132
+ <!--
133
+ ### Direct Usage (Transformers)
134
+
135
+ <details><summary>Click to see the direct usage in Transformers</summary>
136
+
137
+ </details>
138
+ -->
139
+
140
+ <!--
141
+ ### Downstream Usage (Sentence Transformers)
142
+
143
+ You can finetune this model on your own dataset.
144
+
145
+ <details><summary>Click to expand</summary>
146
+
147
+ </details>
148
+ -->
149
+
150
+ <!--
151
+ ### Out-of-Scope Use
152
+
153
+ *List how the model may foreseeably be misused and address what users ought not to do with the model.*
154
+ -->
155
+
156
+ ## Evaluation
157
+
158
+ ### Metrics
159
+
160
+ #### Semantic Similarity
161
+
162
+ * Dataset: `dev`
163
+ * Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)
164
+
165
+ | Metric | Value |
166
+ |:--------------------|:-----------|
167
+ | pearson_cosine | 0.1705 |
168
+ | **spearman_cosine** | **0.1539** |
169
+
170
+ <!--
171
+ ## Bias, Risks and Limitations
172
+
173
+ *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
174
+ -->
175
+
176
+ <!--
177
+ ### Recommendations
178
+
179
+ *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
180
+ -->
181
+
182
+ ## Training Details
183
+
184
+ ### Training Dataset
185
+
186
+ #### Unnamed Dataset
187
+
188
+ * Size: 14,356 training samples
189
+ * Columns: <code>sentence_0</code>, <code>sentence_1</code>, and <code>label</code>
190
+ * Approximate statistics based on the first 1000 samples:
191
+ | | sentence_0 | sentence_1 | label |
192
+ |:--------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:---------------------------------------------------------------|
193
+ | type | string | string | float |
194
+ | details | <ul><li>min: 7 tokens</li><li>mean: 18.64 tokens</li><li>max: 42 tokens</li></ul> | <ul><li>min: 7 tokens</li><li>mean: 18.64 tokens</li><li>max: 42 tokens</li></ul> | <ul><li>min: 1.0</li><li>mean: 3.32</li><li>max: 6.0</li></ul> |
195
+ * Samples:
196
+ | sentence_0 | sentence_1 | label |
197
+ |:---------------------------------------------------------------------------------------------------------------------------------|:---------------------------------------------------------------------------------------------------------------------------------|:-----------------|
198
+ | <code>Construction of the temple complex started in approximately 1264 BC and lasted for about 20 years , until 1244 BC .</code> | <code>Construction of the temple complex started in approximately 1264 BC and lasted for about 20 years , until 1244 BC .</code> | <code>3.0</code> |
199
+ | <code>He knew which bag to buy for his older sister 's birthday .</code> | <code>He knew which bag to buy for his older sister 's birthday .</code> | <code>3.0</code> |
200
+ | <code>The precise origin of absinthe is unclear .</code> | <code>The precise origin of absinthe is unclear .</code> | <code>4.0</code> |
201
+ * Loss: [<code>MultipleNegativesRankingLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#multiplenegativesrankingloss) with these parameters:
202
+ ```json
203
+ {
204
+ "scale": 20.0,
205
+ "similarity_fct": "cos_sim"
206
+ }
207
+ ```
208
+
209
+ ### Training Hyperparameters
210
+ #### Non-Default Hyperparameters
211
+
212
+ - `eval_strategy`: steps
213
+ - `per_device_train_batch_size`: 16
214
+ - `per_device_eval_batch_size`: 16
215
+ - `multi_dataset_batch_sampler`: round_robin
216
+
217
+ #### All Hyperparameters
218
+ <details><summary>Click to expand</summary>
219
+
220
+ - `overwrite_output_dir`: False
221
+ - `do_predict`: False
222
+ - `eval_strategy`: steps
223
+ - `prediction_loss_only`: True
224
+ - `per_device_train_batch_size`: 16
225
+ - `per_device_eval_batch_size`: 16
226
+ - `per_gpu_train_batch_size`: None
227
+ - `per_gpu_eval_batch_size`: None
228
+ - `gradient_accumulation_steps`: 1
229
+ - `eval_accumulation_steps`: None
230
+ - `torch_empty_cache_steps`: None
231
+ - `learning_rate`: 5e-05
232
+ - `weight_decay`: 0.0
233
+ - `adam_beta1`: 0.9
234
+ - `adam_beta2`: 0.999
235
+ - `adam_epsilon`: 1e-08
236
+ - `max_grad_norm`: 1
237
+ - `num_train_epochs`: 3
238
+ - `max_steps`: -1
239
+ - `lr_scheduler_type`: linear
240
+ - `lr_scheduler_kwargs`: {}
241
+ - `warmup_ratio`: 0.0
242
+ - `warmup_steps`: 0
243
+ - `log_level`: passive
244
+ - `log_level_replica`: warning
245
+ - `log_on_each_node`: True
246
+ - `logging_nan_inf_filter`: True
247
+ - `save_safetensors`: True
248
+ - `save_on_each_node`: False
249
+ - `save_only_model`: False
250
+ - `restore_callback_states_from_checkpoint`: False
251
+ - `no_cuda`: False
252
+ - `use_cpu`: False
253
+ - `use_mps_device`: False
254
+ - `seed`: 42
255
+ - `data_seed`: None
256
+ - `jit_mode_eval`: False
257
+ - `use_ipex`: False
258
+ - `bf16`: False
259
+ - `fp16`: False
260
+ - `fp16_opt_level`: O1
261
+ - `half_precision_backend`: auto
262
+ - `bf16_full_eval`: False
263
+ - `fp16_full_eval`: False
264
+ - `tf32`: None
265
+ - `local_rank`: 0
266
+ - `ddp_backend`: None
267
+ - `tpu_num_cores`: None
268
+ - `tpu_metrics_debug`: False
269
+ - `debug`: []
270
+ - `dataloader_drop_last`: False
271
+ - `dataloader_num_workers`: 0
272
+ - `dataloader_prefetch_factor`: None
273
+ - `past_index`: -1
274
+ - `disable_tqdm`: False
275
+ - `remove_unused_columns`: True
276
+ - `label_names`: None
277
+ - `load_best_model_at_end`: False
278
+ - `ignore_data_skip`: False
279
+ - `fsdp`: []
280
+ - `fsdp_min_num_params`: 0
281
+ - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
282
+ - `fsdp_transformer_layer_cls_to_wrap`: None
283
+ - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
284
+ - `deepspeed`: None
285
+ - `label_smoothing_factor`: 0.0
286
+ - `optim`: adamw_torch
287
+ - `optim_args`: None
288
+ - `adafactor`: False
289
+ - `group_by_length`: False
290
+ - `length_column_name`: length
291
+ - `ddp_find_unused_parameters`: None
292
+ - `ddp_bucket_cap_mb`: None
293
+ - `ddp_broadcast_buffers`: False
294
+ - `dataloader_pin_memory`: True
295
+ - `dataloader_persistent_workers`: False
296
+ - `skip_memory_metrics`: True
297
+ - `use_legacy_prediction_loop`: False
298
+ - `push_to_hub`: False
299
+ - `resume_from_checkpoint`: None
300
+ - `hub_model_id`: None
301
+ - `hub_strategy`: every_save
302
+ - `hub_private_repo`: None
303
+ - `hub_always_push`: False
304
+ - `gradient_checkpointing`: False
305
+ - `gradient_checkpointing_kwargs`: None
306
+ - `include_inputs_for_metrics`: False
307
+ - `include_for_metrics`: []
308
+ - `eval_do_concat_batches`: True
309
+ - `fp16_backend`: auto
310
+ - `push_to_hub_model_id`: None
311
+ - `push_to_hub_organization`: None
312
+ - `mp_parameters`:
313
+ - `auto_find_batch_size`: False
314
+ - `full_determinism`: False
315
+ - `torchdynamo`: None
316
+ - `ray_scope`: last
317
+ - `ddp_timeout`: 1800
318
+ - `torch_compile`: False
319
+ - `torch_compile_backend`: None
320
+ - `torch_compile_mode`: None
321
+ - `dispatch_batches`: None
322
+ - `split_batches`: None
323
+ - `include_tokens_per_second`: False
324
+ - `include_num_input_tokens_seen`: False
325
+ - `neftune_noise_alpha`: None
326
+ - `optim_target_modules`: None
327
+ - `batch_eval_metrics`: False
328
+ - `eval_on_start`: False
329
+ - `use_liger_kernel`: False
330
+ - `eval_use_gather_object`: False
331
+ - `average_tokens_across_devices`: False
332
+ - `prompts`: None
333
+ - `batch_sampler`: batch_sampler
334
+ - `multi_dataset_batch_sampler`: round_robin
335
+
336
+ </details>
337
+
338
+ ### Training Logs
339
+ | Epoch | Step | Training Loss | dev cosine similarity loss | dev_spearman_cosine |
340
+ |:------:|:----:|:-------------:|:--------------------------:|:-------------------:|
341
+ | 0.5568 | 500 | 0.002 | 0.3447 | 0.1058 |
342
+ | 1.0 | 898 | - | 0.3711 | 0.1307 |
343
+ | 1.1136 | 1000 | 0.0011 | 0.3750 | 0.1229 |
344
+ | 1.6704 | 1500 | 0.0006 | 0.3898 | 0.1654 |
345
+ | 2.0 | 1796 | - | 0.3773 | 0.1688 |
346
+ | 2.2272 | 2000 | 0.0011 | 0.3789 | 0.1947 |
347
+ | 2.7840 | 2500 | 0.0011 | 0.3890 | 0.1537 |
348
+ | 3.0 | 2694 | - | 0.3907 | 0.1539 |
349
+
350
+
351
+ ### Framework Versions
352
+ - Python: 3.11.11
353
+ - Sentence Transformers: 3.4.1
354
+ - Transformers: 4.48.1
355
+ - PyTorch: 2.5.1+cu124
356
+ - Accelerate: 1.3.0
357
+ - Datasets: 3.2.0
358
+ - Tokenizers: 0.21.0
359
+
360
+ ## Citation
361
+
362
+ ### BibTeX
363
+
364
+ #### Sentence Transformers
365
+ ```bibtex
366
+ @inproceedings{reimers-2019-sentence-bert,
367
+ title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
368
+ author = "Reimers, Nils and Gurevych, Iryna",
369
+ booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
370
+ month = "11",
371
+ year = "2019",
372
+ publisher = "Association for Computational Linguistics",
373
+ url = "https://arxiv.org/abs/1908.10084",
374
+ }
375
+ ```
376
+
377
+ #### MultipleNegativesRankingLoss
378
+ ```bibtex
379
+ @misc{henderson2017efficient,
380
+ title={Efficient Natural Language Response Suggestion for Smart Reply},
381
+ author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
382
+ year={2017},
383
+ eprint={1705.00652},
384
+ archivePrefix={arXiv},
385
+ primaryClass={cs.CL}
386
+ }
387
+ ```
388
+
389
+ <!--
390
+ ## Glossary
391
+
392
+ *Clearly define terms in order to be accessible across audiences.*
393
+ -->
394
+
395
+ <!--
396
+ ## Model Card Authors
397
+
398
+ *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
399
+ -->
400
+
401
+ <!--
402
+ ## Model Card Contact
403
+
404
+ *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
405
+ -->
config.json ADDED
@@ -0,0 +1,26 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "mixedbread-ai/mxbai-embed-large-v1",
3
+ "architectures": [
4
+ "BertModel"
5
+ ],
6
+ "attention_probs_dropout_prob": 0.1,
7
+ "classifier_dropout": null,
8
+ "gradient_checkpointing": false,
9
+ "hidden_act": "gelu",
10
+ "hidden_dropout_prob": 0.1,
11
+ "hidden_size": 1024,
12
+ "initializer_range": 0.02,
13
+ "intermediate_size": 4096,
14
+ "layer_norm_eps": 1e-12,
15
+ "max_position_embeddings": 512,
16
+ "model_type": "bert",
17
+ "num_attention_heads": 16,
18
+ "num_hidden_layers": 24,
19
+ "pad_token_id": 0,
20
+ "position_embedding_type": "absolute",
21
+ "torch_dtype": "float32",
22
+ "transformers_version": "4.48.1",
23
+ "type_vocab_size": 2,
24
+ "use_cache": false,
25
+ "vocab_size": 30522
26
+ }
config_sentence_transformers.json ADDED
@@ -0,0 +1,13 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "__version__": {
3
+ "sentence_transformers": "3.4.1",
4
+ "transformers": "4.48.1",
5
+ "pytorch": "2.5.1+cu124"
6
+ },
7
+ "prompts": {
8
+ "query": "Represent this sentence for searching relevant passages: ",
9
+ "passage": ""
10
+ },
11
+ "default_prompt_name": null,
12
+ "similarity_fn_name": "cosine"
13
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a2afa97fb1a88def74deb80ea1e446504d89be923ee92381234bbc00215834e6
3
+ size 1340612432
modules.json ADDED
@@ -0,0 +1,14 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "idx": 0,
4
+ "name": "0",
5
+ "path": "",
6
+ "type": "sentence_transformers.models.Transformer"
7
+ },
8
+ {
9
+ "idx": 1,
10
+ "name": "1",
11
+ "path": "1_Pooling",
12
+ "type": "sentence_transformers.models.Pooling"
13
+ }
14
+ ]
sentence_bert_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "max_seq_length": 512,
3
+ "do_lower_case": false
4
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "cls_token": {
3
+ "content": "[CLS]",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "mask_token": {
10
+ "content": "[MASK]",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "pad_token": {
17
+ "content": "[PAD]",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "sep_token": {
24
+ "content": "[SEP]",
25
+ "lstrip": false,
26
+ "normalized": false,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ },
30
+ "unk_token": {
31
+ "content": "[UNK]",
32
+ "lstrip": false,
33
+ "normalized": false,
34
+ "rstrip": false,
35
+ "single_word": false
36
+ }
37
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,58 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "[PAD]",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "100": {
12
+ "content": "[UNK]",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "101": {
20
+ "content": "[CLS]",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "102": {
28
+ "content": "[SEP]",
29
+ "lstrip": false,
30
+ "normalized": false,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "103": {
36
+ "content": "[MASK]",
37
+ "lstrip": false,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ }
43
+ },
44
+ "clean_up_tokenization_spaces": true,
45
+ "cls_token": "[CLS]",
46
+ "do_basic_tokenize": true,
47
+ "do_lower_case": true,
48
+ "extra_special_tokens": {},
49
+ "mask_token": "[MASK]",
50
+ "model_max_length": 512,
51
+ "never_split": null,
52
+ "pad_token": "[PAD]",
53
+ "sep_token": "[SEP]",
54
+ "strip_accents": null,
55
+ "tokenize_chinese_chars": true,
56
+ "tokenizer_class": "BertTokenizer",
57
+ "unk_token": "[UNK]"
58
+ }
vocab.txt ADDED
The diff for this file is too large to render. See raw diff