Update README.md
Browse files
README.md
CHANGED
@@ -8,25 +8,6 @@ tags:
|
|
8 |
- peft
|
9 |
- lora
|
10 |
---
|
11 |
-
|
12 |
-
# BERT-QA-SQuAD2 LoRA Adapter
|
13 |
-
|
14 |
-
A **Parameter-Efficient (LoRA)** adapter for `bert-base-uncased`, fine-tuned on **SQuAD 2.0** for extractive question answering. Optimized for low-rank adaptation (LoRA) to reduce memory usage while preserving performance.
|
15 |
-
|
16 |
-
## Model Details
|
17 |
-
|
18 |
-
### Model Description
|
19 |
-
- **Developed by:** [Your Name/Organization]
|
20 |
-
- **Model type:** PEFT (LoRA) adapter for BERT
|
21 |
-
- **Language(s):** English
|
22 |
-
- **License:** Apache 2.0
|
23 |
-
- **Finetuned from:** `bert-base-uncased`
|
24 |
-
- **Adapter Size:** ~3MB (vs. ~440MB for full BERT)
|
25 |
-
|
26 |
-
### Model Sources
|
27 |
-
- **Repository:** [GitHub link if applicable]
|
28 |
-
- **Demo:** [Hugging Face Spaces link if available]
|
29 |
-
|
30 |
## Uses
|
31 |
|
32 |
### Direct Use
|
@@ -48,4 +29,24 @@ qa_pipeline = pipeline("question-answering", model=merged_model, tokenizer=token
|
|
48 |
|
49 |
context = "Hugging Face is based in New York City."
|
50 |
question = "Where is Hugging Face located?"
|
51 |
-
result = qa_pipeline(question=question, context=context) # Output: {'answer': 'New York City', ...}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
8 |
- peft
|
9 |
- lora
|
10 |
---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
11 |
## Uses
|
12 |
|
13 |
### Direct Use
|
|
|
29 |
|
30 |
context = "Hugging Face is based in New York City."
|
31 |
question = "Where is Hugging Face located?"
|
32 |
+
result = qa_pipeline(question=question, context=context) # Output: {'answer': 'New York City', ...}
|
33 |
+
|
34 |
+
```
|
35 |
+
# BERT-QA-SQuAD2 LoRA Adapter
|
36 |
+
|
37 |
+
A **Parameter-Efficient (LoRA)** adapter for `bert-base-uncased`, fine-tuned on **SQuAD 2.0** for extractive question answering. Optimized for low-rank adaptation (LoRA) to reduce memory usage while preserving performance.
|
38 |
+
|
39 |
+
## Model Details
|
40 |
+
|
41 |
+
### Model Description
|
42 |
+
- **Developed by:** [Your Name/Organization]
|
43 |
+
- **Model type:** PEFT (LoRA) adapter for BERT
|
44 |
+
- **Language(s):** English
|
45 |
+
- **License:** Apache 2.0
|
46 |
+
- **Finetuned from:** `bert-base-uncased`
|
47 |
+
- **Adapter Size:** ~3MB (vs. ~440MB for full BERT)
|
48 |
+
|
49 |
+
### Model Sources
|
50 |
+
- **Repository:** [GitHub link if applicable]
|
51 |
+
- **Demo:** [Hugging Face Spaces link if available]
|
52 |
+
|