from transformers import AutoTokenizer, AutoModelForQuestionAnswering, pipeline from peft import PeftModel, PeftConfig config = PeftConfig.from_pretrained("MohamedShakhsak/bert-qa-squad2_V1") base_model = AutoModelForQuestionAnswering.from_pretrained(config.base_model_name_or_path) model = PeftModel.from_pretrained(base_model, "MohamedShakhsak/bert-qa-squad2_V1") tokenizer = AutoTokenizer.from_pretrained(config.base_model_name_or_path) qa_pipeline = pipeline("question-answering", model=model, tokenizer=tokenizer) qa_pipeline = pipeline("question-answering", model=model, tokenizer=tokenizer) examples = [ { "question": "What is the capital of France?", "context": "Paris is the capital and most populous city of France." }, { "question": "When was the iPhone first released?", "context": "The first iPhone was released by Apple Inc. on June 29, 2007." } ] for example in examples: answer = qa_pipeline(example) print(f"Q: {example['question']}\nA: {answer}\n")