Update README.md
Browse files
README.md
CHANGED
@@ -1,3 +1,183 @@
|
|
1 |
-
---
|
2 |
-
license: mit
|
3 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: mit
|
3 |
+
datasets:
|
4 |
+
- Overfit-GM/turkish-toxic-language
|
5 |
+
language:
|
6 |
+
- tr
|
7 |
+
base_model:
|
8 |
+
- dbmdz/bert-base-turkish-cased
|
9 |
+
pipeline_tag: text-classification
|
10 |
+
library_name: transformers
|
11 |
+
tags:
|
12 |
+
- text-classification
|
13 |
+
- toxicity-detection
|
14 |
+
- turkish
|
15 |
+
- bert
|
16 |
+
- nlp
|
17 |
+
- content-moderation
|
18 |
+
---
|
19 |
+
|
20 |
+
# MeowML/ToxicBERT - Turkish Toxic Language Detection
|
21 |
+
|
22 |
+
## Model Description
|
23 |
+
|
24 |
+
ToxicBERT is a fine-tuned BERT model specifically designed for detecting toxic language in Turkish text. Built upon the `dbmdz/bert-base-turkish-cased` foundation model, this classifier can identify potentially harmful, offensive, or toxic content in Turkish social media posts, comments, and general text.
|
25 |
+
|
26 |
+
## Model Details
|
27 |
+
|
28 |
+
- **Model Type**: Text Classification (Binary)
|
29 |
+
- **Language**: Turkish (tr)
|
30 |
+
- **Base Model**: `dbmdz/bert-base-turkish-cased`
|
31 |
+
- **License**: MIT
|
32 |
+
- **Library**: Transformers
|
33 |
+
- **Task**: Toxicity Detection
|
34 |
+
|
35 |
+
## Intended Use
|
36 |
+
|
37 |
+
### Primary Use Cases
|
38 |
+
- Content moderation for Turkish social media platforms
|
39 |
+
- Automated filtering of user-generated content
|
40 |
+
- Research in Turkish NLP and toxicity detection
|
41 |
+
- Educational purposes for understanding toxic language patterns
|
42 |
+
|
43 |
+
### Out-of-Scope Use
|
44 |
+
- This model should not be used as the sole decision-maker for content moderation without human oversight
|
45 |
+
- Not suitable for languages other than Turkish
|
46 |
+
- Should not be used for sensitive applications without proper validation and testing
|
47 |
+
|
48 |
+
## Training Data
|
49 |
+
|
50 |
+
The model was trained on the `Overfit-GM/turkish-toxic-language` dataset, which contains Turkish text samples labeled for toxicity. The dataset includes various forms of toxic content commonly found in online Turkish communications.
|
51 |
+
|
52 |
+
## Model Performance
|
53 |
+
|
54 |
+
The model outputs:
|
55 |
+
- **Binary Classification**: 0 (Non-toxic) or 1 (Toxic)
|
56 |
+
- **Confidence Score**: Probability score indicating model confidence
|
57 |
+
- **Toxic Probability**: Specific probability of the text being toxic
|
58 |
+
|
59 |
+
## Usage
|
60 |
+
|
61 |
+
### Quick Start
|
62 |
+
|
63 |
+
```python
|
64 |
+
import torch
|
65 |
+
from transformers import AutoTokenizer, AutoModelForSequenceClassification
|
66 |
+
|
67 |
+
# Load model and tokenizer
|
68 |
+
tokenizer = AutoTokenizer.from_pretrained("dbmdz/bert-base-turkish-cased")
|
69 |
+
model = AutoModelForSequenceClassification.from_pretrained("MeowML/ToxicBERT")
|
70 |
+
|
71 |
+
# Prepare text
|
72 |
+
text = "Merhaba, nasılsın?"
|
73 |
+
inputs = tokenizer(text, return_tensors="pt", truncation=True, padding=True, max_length=256)
|
74 |
+
|
75 |
+
# Get prediction
|
76 |
+
with torch.no_grad():
|
77 |
+
outputs = model(**inputs)
|
78 |
+
probabilities = torch.nn.functional.softmax(outputs.logits, dim=-1)
|
79 |
+
prediction = torch.argmax(probabilities, dim=-1)
|
80 |
+
|
81 |
+
toxic_probability = probabilities[0][1].item()
|
82 |
+
is_toxic = bool(prediction.item())
|
83 |
+
|
84 |
+
print(f"Is toxic: {is_toxic}")
|
85 |
+
print(f"Toxic probability: {toxic_probability:.4f}")
|
86 |
+
```
|
87 |
+
|
88 |
+
### Advanced Usage with Custom Class
|
89 |
+
|
90 |
+
```python
|
91 |
+
import torch
|
92 |
+
from transformers import AutoTokenizer, AutoModelForSequenceClassification
|
93 |
+
|
94 |
+
class ToxicLanguageDetector:
|
95 |
+
def __init__(self, model_name="MeowML/ToxicBERT"):
|
96 |
+
self.tokenizer = AutoTokenizer.from_pretrained("dbmdz/bert-base-turkish-cased")
|
97 |
+
self.model = AutoModelForSequenceClassification.from_pretrained(model_name)
|
98 |
+
self.device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
99 |
+
self.model.to(self.device)
|
100 |
+
self.model.eval()
|
101 |
+
|
102 |
+
def predict(self, text):
|
103 |
+
inputs = self.tokenizer(
|
104 |
+
text,
|
105 |
+
truncation=True,
|
106 |
+
padding='max_length',
|
107 |
+
max_length=256,
|
108 |
+
return_tensors='pt'
|
109 |
+
).to(self.device)
|
110 |
+
|
111 |
+
with torch.no_grad():
|
112 |
+
outputs = self.model(**inputs)
|
113 |
+
probabilities = torch.nn.functional.softmax(outputs.logits, dim=-1)
|
114 |
+
prediction = torch.argmax(probabilities, dim=-1)
|
115 |
+
|
116 |
+
return {
|
117 |
+
'text': text,
|
118 |
+
'is_toxic': bool(prediction.item()),
|
119 |
+
'toxic_probability': probabilities[0][1].item(),
|
120 |
+
'confidence': max(probabilities[0]).item()
|
121 |
+
}
|
122 |
+
|
123 |
+
# Usage
|
124 |
+
detector = ToxicLanguageDetector()
|
125 |
+
result = detector.predict("Merhaba, nasılsın?")
|
126 |
+
print(result)
|
127 |
+
```
|
128 |
+
|
129 |
+
## Limitations and Biases
|
130 |
+
|
131 |
+
### Limitations
|
132 |
+
- The model's performance depends heavily on the training data quality and coverage
|
133 |
+
- May have difficulty with context-dependent toxicity (sarcasm, irony)
|
134 |
+
- Performance may vary across different Turkish dialects or informal language
|
135 |
+
- Shorter texts might be more challenging to classify accurately
|
136 |
+
|
137 |
+
### Potential Biases
|
138 |
+
- The model may reflect biases present in the training dataset
|
139 |
+
- Certain topics, demographics, or linguistic patterns might be over- or under-represented
|
140 |
+
- Regular evaluation and bias testing are recommended for production use
|
141 |
+
|
142 |
+
## Ethical Considerations
|
143 |
+
|
144 |
+
- This model should be used responsibly with human oversight
|
145 |
+
- False positives and negatives are expected and should be accounted for
|
146 |
+
- Consider the impact on freedom of expression when implementing automated moderation
|
147 |
+
- Regular auditing and updating are recommended to maintain fairness
|
148 |
+
|
149 |
+
## Technical Specifications
|
150 |
+
|
151 |
+
- **Input**: Text strings (max 256 tokens)
|
152 |
+
- **Output**: Binary classification with probability scores
|
153 |
+
- **Model Size**: Based on BERT-base architecture
|
154 |
+
- **Inference Speed**: Optimized for both CPU and GPU inference
|
155 |
+
- **Memory Requirements**: Suitable for standard hardware configurations
|
156 |
+
|
157 |
+
## Citation
|
158 |
+
|
159 |
+
If you use this model in your research or applications, please cite:
|
160 |
+
|
161 |
+
```bibtex
|
162 |
+
@misc{meowml_toxicbert_2024,
|
163 |
+
title={ToxicBERT: Turkish Toxic Language Detection},
|
164 |
+
author={MeowML},
|
165 |
+
year={2024},
|
166 |
+
publisher={Hugging Face},
|
167 |
+
url={https://huggingface.co/MeowML/ToxicBERT}
|
168 |
+
}
|
169 |
+
```
|
170 |
+
|
171 |
+
## Acknowledgments
|
172 |
+
|
173 |
+
- Base model: `dbmdz/bert-base-turkish-cased`
|
174 |
+
- Training dataset: `Overfit-GM/turkish-toxic-language`
|
175 |
+
- Built with Hugging Face Transformers library
|
176 |
+
|
177 |
+
## Contact
|
178 |
+
|
179 |
+
For questions, issues, or suggestions, please open an issue in the model repository or contact the MeowML team.
|
180 |
+
|
181 |
+
---
|
182 |
+
|
183 |
+
**Disclaimer**: This model is provided for research and educational purposes. Users are responsible for ensuring appropriate and ethical use in their applications.
|