Update README.md
Browse files
README.md
CHANGED
|
@@ -1,213 +1,198 @@
|
|
| 1 |
-
---
|
| 2 |
-
language:
|
| 3 |
-
- en
|
| 4 |
-
- ko
|
| 5 |
-
- zh
|
| 6 |
-
license: apache-2.0
|
| 7 |
-
library_name: peft
|
| 8 |
-
pipeline_tag: visual-question-answering
|
| 9 |
-
tags:
|
| 10 |
-
- vision
|
| 11 |
-
- visual-question-answering
|
| 12 |
-
- multimodal
|
| 13 |
-
- qwen
|
| 14 |
-
- lora
|
| 15 |
-
- tcm
|
| 16 |
-
- traditional-chinese-medicine
|
| 17 |
-
- tongue-diagnosis
|
| 18 |
-
---
|
| 19 |
-
|
| 20 |
-
# ViTCM_LLM - Traditional Chinese Medicine Tongue Diagnosis Model
|
| 21 |
-
|
| 22 |
-
This is a LoRA (Low-Rank Adaptation) adapter for the Qwen2.5-VL-32B-Instruct model, fine-tuned specifically for Traditional Chinese Medicine (TCM) tongue diagnosis tasks.
|
| 23 |
-
|
| 24 |
-
## Model Details
|
| 25 |
-
|
| 26 |
-
### Model Description
|
| 27 |
-
|
| 28 |
-
- **Developed by:** Mark-CHAE
|
| 29 |
-
- **Model type:** LoRA Adapter for Qwen2.5-VL-32B-Instruct
|
| 30 |
-
- **Language(s) (NLP):** Chinese, Korean, English
|
| 31 |
-
- **License:** Apache-2.0
|
| 32 |
-
- **Finetuned from model:** Qwen/Qwen2.5-VL-32B-Instruct
|
| 33 |
-
- **Specialization:** Traditional Chinese Medicine Tongue Diagnosis
|
| 34 |
-
|
| 35 |
-
### Model Sources
|
| 36 |
-
|
| 37 |
-
- **Repository:** [Mark-CHAE/shezhen](https://huggingface.co/Mark-CHAE/shezhen)
|
| 38 |
-
- **Base Model:** [Qwen/Qwen2.5-VL-32B-Instruct](https://huggingface.co/Qwen/Qwen2.5-VL-32B-Instruct)
|
| 39 |
-
|
| 40 |
-
## Uses
|
| 41 |
-
|
| 42 |
-
### Direct Use
|
| 43 |
-
|
| 44 |
-
This LoRA adapter can be used with the base Qwen2.5-VL-32B-Instruct model for multimodal vision-language tasks including:
|
| 45 |
-
|
| 46 |
-
- Traditional Chinese Medicine tongue diagnosis
|
| 47 |
-
- Tongue image analysis and interpretation
|
| 48 |
-
- Visual question answering for medical images
|
| 49 |
-
- Multimodal medical conversations
|
| 50 |
-
- Symptom analysis from tongue images
|
| 51 |
-
|
| 52 |
-
### Downstream Use
|
| 53 |
-
|
| 54 |
-
The adapter can be loaded with the base model for inference or further fine-tuning on specific TCM diagnosis tasks.
|
| 55 |
-
|
| 56 |
-
### Out-of-Scope Use
|
| 57 |
-
|
| 58 |
-
This model should not be used for:
|
| 59 |
-
|
| 60 |
-
- Generating harmful, offensive, or inappropriate content
|
| 61 |
-
- Creating deepfakes or misleading visual content
|
| 62 |
-
- Any illegal activities
|
| 63 |
-
- Making actual medical diagnoses without proper medical supervision
|
| 64 |
-
|
| 65 |
-
### Recommendations
|
| 66 |
-
|
| 67 |
-
Users should:
|
| 68 |
-
|
| 69 |
-
- Verify outputs for accuracy and appropriateness
|
| 70 |
-
- Be aware of potential biases in the model
|
| 71 |
-
- Use appropriate safety measures when deploying
|
| 72 |
-
- Not rely solely on this model for medical diagnosis
|
| 73 |
-
- Consult qualified medical professionals for actual diagnosis
|
| 74 |
-
|
| 75 |
-
## How to Get Started with the Model
|
| 76 |
-
|
| 77 |
-
### Using the Inference Widget
|
| 78 |
-
|
| 79 |
-
You can try the model directly in the browser using the Visual Question Answering widget above. Simply upload a tongue image and ask a question about it.
|
| 80 |
-
|
| 81 |
-
### Using the Model in Code
|
| 82 |
-
|
| 83 |
-
```python
|
| 84 |
-
from peft import PeftModel
|
| 85 |
-
from transformers import AutoTokenizer, AutoModelForCausalLM, AutoProcessor
|
| 86 |
-
import torch
|
| 87 |
-
from PIL import Image
|
| 88 |
-
|
| 89 |
-
# Load base model and tokenizer
|
| 90 |
-
base_model = AutoModelForCausalLM.from_pretrained(
|
| 91 |
-
"Qwen/Qwen2.5-VL-32B-Instruct",
|
| 92 |
-
torch_dtype=torch.float16,
|
| 93 |
-
device_map="auto"
|
| 94 |
-
)
|
| 95 |
-
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen2.5-VL-32B-Instruct")
|
| 96 |
-
processor = AutoProcessor.from_pretrained("Qwen/Qwen2.5-VL-32B-Instruct")
|
| 97 |
-
|
| 98 |
-
# Load LoRA adapter
|
| 99 |
-
model = PeftModel.from_pretrained(base_model, "Mark-CHAE/shezhen")
|
| 100 |
-
|
| 101 |
-
# Prepare inputs
|
| 102 |
-
image = Image.open("tongue_image.jpg")
|
| 103 |
-
question = "根据图片判断舌诊内容"
|
| 104 |
-
|
| 105 |
-
prompt = f"<|im_start|>user\n<image>\n{question}<|im_end|>\n<|im_start|>assistant\n"
|
| 106 |
-
|
| 107 |
-
inputs = processor(
|
| 108 |
-
text=prompt,
|
| 109 |
-
images=image,
|
| 110 |
-
return_tensors="pt"
|
| 111 |
-
)
|
| 112 |
-
|
| 113 |
-
# Generate response
|
| 114 |
-
with torch.no_grad():
|
| 115 |
-
outputs = model.generate(
|
| 116 |
-
**inputs,
|
| 117 |
-
max_length=512,
|
| 118 |
-
temperature=0.7,
|
| 119 |
-
top_p=0.9,
|
| 120 |
-
do_sample=True,
|
| 121 |
-
pad_token_id=tokenizer.eos_token_id
|
| 122 |
-
)
|
| 123 |
-
|
| 124 |
-
response = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
| 125 |
-
answer = response.split("<|im_start|>assistant")[-1].strip()
|
| 126 |
-
print(answer)
|
| 127 |
-
```
|
| 128 |
-
|
| 129 |
-
## Training Details
|
| 130 |
-
|
| 131 |
-
### Training Data
|
| 132 |
-
|
| 133 |
-
The model was fine-tuned on multimodal vision-language data including Chinese, Korean, and English content, with specific focus on Traditional Chinese Medicine tongue diagnosis scenarios.
|
| 134 |
-
|
| 135 |
-
### Training Procedure
|
| 136 |
-
|
| 137 |
-
#### Training Hyperparameters
|
| 138 |
-
|
| 139 |
-
- **Training regime:** LoRA fine-tuning
|
| 140 |
-
- **LoRA rank:** 64
|
| 141 |
-
- **LoRA alpha:** 128
|
| 142 |
-
- **Target modules:** v_proj, qkv, attn.proj, q_proj, gate_proj, down_proj, up_proj, o_proj, k_proj
|
| 143 |
-
|
| 144 |
-
|
| 145 |
-
|
| 146 |
-
|
| 147 |
-
|
| 148 |
-
- **
|
| 149 |
-
|
| 150 |
-
|
| 151 |
-
|
| 152 |
-
|
| 153 |
-
|
| 154 |
-
|
| 155 |
-
|
| 156 |
-
|
| 157 |
-
|
| 158 |
-
|
| 159 |
-
|
| 160 |
-
|
| 161 |
-
|
| 162 |
-
|
| 163 |
-
|
| 164 |
-
|
| 165 |
-
|
| 166 |
-
|
| 167 |
-
|
| 168 |
-
|
| 169 |
-
|
| 170 |
-
|
| 171 |
-
|
| 172 |
-
|
| 173 |
-
|
| 174 |
-
|
| 175 |
-
- **
|
| 176 |
-
|
| 177 |
-
|
| 178 |
-
|
| 179 |
-
|
| 180 |
-
####
|
| 181 |
-
|
| 182 |
-
|
| 183 |
-
|
| 184 |
-
|
| 185 |
-
|
| 186 |
-
|
| 187 |
-
|
| 188 |
-
|
| 189 |
-
|
| 190 |
-
|
| 191 |
-
|
| 192 |
-
|
| 193 |
-
|
| 194 |
-
|
| 195 |
-
|
| 196 |
-
|
| 197 |
-
|
| 198 |
-
year = {2024},
|
| 199 |
-
url = {https://huggingface.co/Mark-CHAE/shezhen}
|
| 200 |
-
}
|
| 201 |
-
```
|
| 202 |
-
|
| 203 |
-
**APA:**
|
| 204 |
-
|
| 205 |
-
Mark-CHAE. (2024). ViTCM_LLM: Traditional Chinese Medicine Tongue Diagnosis Model. Hugging Face. https://huggingface.co/Mark-CHAE/shezhen
|
| 206 |
-
|
| 207 |
-
## Model Card Contact
|
| 208 |
-
|
| 209 |
-
For questions about this model, please contact the model author.
|
| 210 |
-
|
| 211 |
-
### Framework versions
|
| 212 |
-
|
| 213 |
- PEFT 0.15.2
|
|
|
|
| 1 |
+
---
|
| 2 |
+
language:
|
| 3 |
+
- en
|
| 4 |
+
- ko
|
| 5 |
+
- zh
|
| 6 |
+
license: apache-2.0
|
| 7 |
+
library_name: peft
|
| 8 |
+
pipeline_tag: visual-question-answering
|
| 9 |
+
tags:
|
| 10 |
+
- vision
|
| 11 |
+
- visual-question-answering
|
| 12 |
+
- multimodal
|
| 13 |
+
- qwen
|
| 14 |
+
- lora
|
| 15 |
+
- tcm
|
| 16 |
+
- traditional-chinese-medicine
|
| 17 |
+
- tongue-diagnosis
|
| 18 |
+
---
|
| 19 |
+
|
| 20 |
+
# ViTCM_LLM - Traditional Chinese Medicine Tongue Diagnosis Model
|
| 21 |
+
|
| 22 |
+
This is a LoRA (Low-Rank Adaptation) adapter for the Qwen2.5-VL-32B-Instruct model, fine-tuned specifically for Traditional Chinese Medicine (TCM) tongue diagnosis tasks.
|
| 23 |
+
|
| 24 |
+
## Model Details
|
| 25 |
+
|
| 26 |
+
### Model Description
|
| 27 |
+
|
| 28 |
+
- **Developed by:** Mark-CHAE
|
| 29 |
+
- **Model type:** LoRA Adapter for Qwen2.5-VL-32B-Instruct
|
| 30 |
+
- **Language(s) (NLP):** Chinese, Korean, English
|
| 31 |
+
- **License:** Apache-2.0
|
| 32 |
+
- **Finetuned from model:** Qwen/Qwen2.5-VL-32B-Instruct
|
| 33 |
+
- **Specialization:** Traditional Chinese Medicine Tongue Diagnosis
|
| 34 |
+
|
| 35 |
+
### Model Sources
|
| 36 |
+
|
| 37 |
+
- **Repository:** [Mark-CHAE/shezhen](https://huggingface.co/Mark-CHAE/shezhen)
|
| 38 |
+
- **Base Model:** [Qwen/Qwen2.5-VL-32B-Instruct](https://huggingface.co/Qwen/Qwen2.5-VL-32B-Instruct)
|
| 39 |
+
|
| 40 |
+
## Uses
|
| 41 |
+
|
| 42 |
+
### Direct Use
|
| 43 |
+
|
| 44 |
+
This LoRA adapter can be used with the base Qwen2.5-VL-32B-Instruct model for multimodal vision-language tasks including:
|
| 45 |
+
|
| 46 |
+
- Traditional Chinese Medicine tongue diagnosis
|
| 47 |
+
- Tongue image analysis and interpretation
|
| 48 |
+
- Visual question answering for medical images
|
| 49 |
+
- Multimodal medical conversations
|
| 50 |
+
- Symptom analysis from tongue images
|
| 51 |
+
|
| 52 |
+
### Downstream Use
|
| 53 |
+
|
| 54 |
+
The adapter can be loaded with the base model for inference or further fine-tuning on specific TCM diagnosis tasks.
|
| 55 |
+
|
| 56 |
+
### Out-of-Scope Use
|
| 57 |
+
|
| 58 |
+
This model should not be used for:
|
| 59 |
+
|
| 60 |
+
- Generating harmful, offensive, or inappropriate content
|
| 61 |
+
- Creating deepfakes or misleading visual content
|
| 62 |
+
- Any illegal activities
|
| 63 |
+
- Making actual medical diagnoses without proper medical supervision
|
| 64 |
+
|
| 65 |
+
### Recommendations
|
| 66 |
+
|
| 67 |
+
Users should:
|
| 68 |
+
|
| 69 |
+
- Verify outputs for accuracy and appropriateness
|
| 70 |
+
- Be aware of potential biases in the model
|
| 71 |
+
- Use appropriate safety measures when deploying
|
| 72 |
+
- Not rely solely on this model for medical diagnosis
|
| 73 |
+
- Consult qualified medical professionals for actual diagnosis
|
| 74 |
+
|
| 75 |
+
## How to Get Started with the Model
|
| 76 |
+
|
| 77 |
+
### Using the Inference Widget
|
| 78 |
+
|
| 79 |
+
You can try the model directly in the browser using the Visual Question Answering widget above. Simply upload a tongue image and ask a question about it.
|
| 80 |
+
|
| 81 |
+
### Using the Model in Code
|
| 82 |
+
|
| 83 |
+
```python
|
| 84 |
+
from peft import PeftModel
|
| 85 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM, AutoProcessor
|
| 86 |
+
import torch
|
| 87 |
+
from PIL import Image
|
| 88 |
+
|
| 89 |
+
# Load base model and tokenizer
|
| 90 |
+
base_model = AutoModelForCausalLM.from_pretrained(
|
| 91 |
+
"Qwen/Qwen2.5-VL-32B-Instruct",
|
| 92 |
+
torch_dtype=torch.float16,
|
| 93 |
+
device_map="auto"
|
| 94 |
+
)
|
| 95 |
+
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen2.5-VL-32B-Instruct")
|
| 96 |
+
processor = AutoProcessor.from_pretrained("Qwen/Qwen2.5-VL-32B-Instruct")
|
| 97 |
+
|
| 98 |
+
# Load LoRA adapter
|
| 99 |
+
model = PeftModel.from_pretrained(base_model, "Mark-CHAE/shezhen")
|
| 100 |
+
|
| 101 |
+
# Prepare inputs
|
| 102 |
+
image = Image.open("tongue_image.jpg")
|
| 103 |
+
question = "根据图片判断舌诊内容"
|
| 104 |
+
|
| 105 |
+
prompt = f"<|im_start|>user\n<image>\n{question}<|im_end|>\n<|im_start|>assistant\n"
|
| 106 |
+
|
| 107 |
+
inputs = processor(
|
| 108 |
+
text=prompt,
|
| 109 |
+
images=image,
|
| 110 |
+
return_tensors="pt"
|
| 111 |
+
)
|
| 112 |
+
|
| 113 |
+
# Generate response
|
| 114 |
+
with torch.no_grad():
|
| 115 |
+
outputs = model.generate(
|
| 116 |
+
**inputs,
|
| 117 |
+
max_length=512,
|
| 118 |
+
temperature=0.7,
|
| 119 |
+
top_p=0.9,
|
| 120 |
+
do_sample=True,
|
| 121 |
+
pad_token_id=tokenizer.eos_token_id
|
| 122 |
+
)
|
| 123 |
+
|
| 124 |
+
response = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
| 125 |
+
answer = response.split("<|im_start|>assistant")[-1].strip()
|
| 126 |
+
print(answer)
|
| 127 |
+
```
|
| 128 |
+
|
| 129 |
+
## Training Details
|
| 130 |
+
|
| 131 |
+
### Training Data
|
| 132 |
+
|
| 133 |
+
The model was fine-tuned on multimodal vision-language data including Chinese, Korean, and English content, with specific focus on Traditional Chinese Medicine tongue diagnosis scenarios.
|
| 134 |
+
|
| 135 |
+
### Training Procedure
|
| 136 |
+
|
| 137 |
+
#### Training Hyperparameters
|
| 138 |
+
|
| 139 |
+
- **Training regime:** LoRA fine-tuning
|
| 140 |
+
- **LoRA rank:** 64
|
| 141 |
+
- **LoRA alpha:** 128
|
| 142 |
+
- **Target modules:** v_proj, qkv, attn.proj, q_proj, gate_proj, down_proj, up_proj, o_proj, k_proj
|
| 143 |
+
|
| 144 |
+
|
| 145 |
+
#### Speeds, Sizes, Times
|
| 146 |
+
|
| 147 |
+
- **Adapter size:** 2.2GB
|
| 148 |
+
- **Base model:** Qwen2.5-VL-32B-Instruct (32B parameters)
|
| 149 |
+
|
| 150 |
+
## Evaluation
|
| 151 |
+
|
| 152 |
+
### Testing Data, Factors & Metrics
|
| 153 |
+
|
| 154 |
+
#### Testing Data
|
| 155 |
+
|
| 156 |
+
Evaluation was performed on multimodal vision-language benchmarks with focus on medical image understanding and TCM tongue diagnosis.
|
| 157 |
+
|
| 158 |
+
#### Metrics
|
| 159 |
+
|
| 160 |
+
Standard vision-language evaluation metrics including accuracy, BLEU, and human evaluation scores.
|
| 161 |
+
|
| 162 |
+
### Results
|
| 163 |
+
|
| 164 |
+
[Evaluation results to be added]
|
| 165 |
+
|
| 166 |
+
#### Summary
|
| 167 |
+
|
| 168 |
+
This LoRA adapter provides an efficient way to adapt the Qwen2.5-VL-32B-Instruct model for Traditional Chinese Medicine tongue diagnosis tasks while maintaining the base model's capabilities.
|
| 169 |
+
|
| 170 |
+
## Technical Specifications
|
| 171 |
+
|
| 172 |
+
### Model Architecture and Objective
|
| 173 |
+
|
| 174 |
+
- **Architecture:** LoRA adapter for Qwen2.5-VL-32B-Instruct
|
| 175 |
+
- **Objective:** Multimodal vision-language understanding and generation, specialized for TCM tongue diagnosis
|
| 176 |
+
|
| 177 |
+
### Compute Infrastructure
|
| 178 |
+
|
| 179 |
+
|
| 180 |
+
#### Software
|
| 181 |
+
|
| 182 |
+
- PEFT 0.15.2
|
| 183 |
+
- Transformers library
|
| 184 |
+
- PyTorch
|
| 185 |
+
|
| 186 |
+
|
| 187 |
+
|
| 188 |
+
**APA:**
|
| 189 |
+
|
| 190 |
+
Mark-CHAE. (2024). ViTCM_LLM: Traditional Chinese Medicine Tongue Diagnosis Model. Hugging Face. https://huggingface.co/Mark-CHAE/shezhen
|
| 191 |
+
|
| 192 |
+
## Model Card Contact
|
| 193 |
+
|
| 194 |
+
For questions about this model, please contact the model author.
|
| 195 |
+
|
| 196 |
+
### Framework versions
|
| 197 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 198 |
- PEFT 0.15.2
|