from typing import Dict import torch from transformers import AutoModelForCausalLM, AutoTokenizer class EndpointHandler: """ Minimal custom handler for InternLM2 / NuExtract-2-8B """ def __init__(self, path: str = "./model"): # allow execution of custom model code self.tokenizer = AutoTokenizer.from_pretrained( path, trust_remote_code=True ) self.model = AutoModelForCausalLM.from_pretrained( path, trust_remote_code=True, # ← key line torch_dtype=torch.float16, # load in fp16 to fit on one A10/T4 device_map="auto" # send to GPU if available ).eval() # put in inference mode def __call__(self, data: Dict[str, str]) -> Dict[str, str]: prompt = data.get("inputs", "") if not prompt: return {"error": "No input provided."} inputs = self.tokenizer(prompt, return_tensors="pt").to(self.model.device) outputs = self.model.generate(**inputs, max_new_tokens=128) answer = self.tokenizer.decode(outputs[0], skip_special_tokens=True) return {"generated_text": answer}