|
from typing import Dict |
|
import torch |
|
from transformers import AutoTokenizer, AutoModelForCausalLM |
|
import os |
|
|
|
class EndpointHandler: |
|
"""Custom handler for NuExtract-2-8B (InternLM2 based).""" |
|
|
|
def __init__(self, path: str = "") -> None: |
|
|
|
self.tokenizer = AutoTokenizer.from_pretrained( |
|
path, |
|
trust_remote_code=True |
|
) |
|
self.model = AutoModelForCausalLM.from_pretrained( |
|
path, |
|
trust_remote_code=True, |
|
torch_dtype=torch.float16, |
|
device_map="auto" |
|
).eval() |
|
|
|
def __call__(self, data: Dict[str, str]) -> Dict[str, str]: |
|
prompt = data.get("inputs", "") |
|
if not prompt: |
|
return {"error": "No input provided."} |
|
|
|
inputs = self.tokenizer(prompt, return_tensors="pt").to(self.model.device) |
|
output_ids = self.model.generate(**inputs, max_new_tokens=128) |
|
answer = self.tokenizer.decode(output_ids[0], skip_special_tokens=True) |
|
return {"generated_text": answer} |