File size: 1,211 Bytes
5c35d44
c9feb62
 
5c35d44
 
c9feb62
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5c35d44
 
c9feb62
 
5c35d44
c9feb62
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
from typing import Dict
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer

class EndpointHandler:
    """
    Minimal custom handler for InternLM2 / NuExtract-2-8B
    """

    def __init__(self, path: str = "./model"):
        # allow execution of custom model code
        self.tokenizer = AutoTokenizer.from_pretrained(
            path, trust_remote_code=True
        )
        self.model = AutoModelForCausalLM.from_pretrained(
            path,
            trust_remote_code=True,           # ← key line
            torch_dtype=torch.float16,        # load in fp16 to fit on one A10/T4
            device_map="auto"                 # send to GPU if available
        ).eval()                              # put in inference mode

    def __call__(self, data: Dict[str, str]) -> Dict[str, str]:
        prompt = data.get("inputs", "")
        if not prompt:
            return {"error": "No input provided."}

        inputs = self.tokenizer(prompt, return_tensors="pt").to(self.model.device)
        outputs = self.model.generate(**inputs, max_new_tokens=128)
        answer  = self.tokenizer.decode(outputs[0], skip_special_tokens=True)
        return {"generated_text": answer}