| 
							 | 
						import math | 
					
					
						
						| 
							 | 
						from typing import Optional, Tuple, List, Union | 
					
					
						
						| 
							 | 
						import warnings | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						import torch | 
					
					
						
						| 
							 | 
						from torch import nn | 
					
					
						
						| 
							 | 
						import torch.nn.functional as F | 
					
					
						
						| 
							 | 
						from transformers import PreTrainedModel, Cache, DynamicCache, StaticCache | 
					
					
						
						| 
							 | 
						from transformers.activations import ACT2FN | 
					
					
						
						| 
							 | 
						from transformers.modeling_attn_mask_utils import _prepare_4d_causal_attention_mask | 
					
					
						
						| 
							 | 
						from transformers.modeling_outputs import MoeModelOutputWithPast, MoeCausalLMOutputWithPast | 
					
					
						
						| 
							 | 
						from transformers.utils import logging, is_flash_attn_2_available, is_flash_attn_greater_or_equal_2_10 | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						from .configuration_time_moe import TimeMoeConfig | 
					
					
						
						| 
							 | 
						from .ts_generation_mixin import TSGenerationMixin | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						logger = logging.get_logger(__name__) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						try: | 
					
					
						
						| 
							 | 
						    from flash_attn import flash_attn_func, flash_attn_varlen_func | 
					
					
						
						| 
							 | 
						    from flash_attn.bert_padding import index_first_axis, pad_input, unpad_input   | 
					
					
						
						| 
							 | 
						except: | 
					
					
						
						| 
							 | 
						    pass | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						def _get_unpad_data(attention_mask): | 
					
					
						
						| 
							 | 
						    seqlens_in_batch = attention_mask.sum(dim=-1, dtype=torch.int32) | 
					
					
						
						| 
							 | 
						    indices = torch.nonzero(attention_mask.flatten(), as_tuple=False).flatten() | 
					
					
						
						| 
							 | 
						    max_seqlen_in_batch = seqlens_in_batch.max().item() | 
					
					
						
						| 
							 | 
						    cu_seqlens = F.pad(torch.cumsum(seqlens_in_batch, dim=0, dtype=torch.int32), (1, 0)) | 
					
					
						
						| 
							 | 
						    return ( | 
					
					
						
						| 
							 | 
						        indices, | 
					
					
						
						| 
							 | 
						        cu_seqlens, | 
					
					
						
						| 
							 | 
						        max_seqlen_in_batch, | 
					
					
						
						| 
							 | 
						    ) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						def load_balancing_loss_func( | 
					
					
						
						| 
							 | 
						        gate_logits: Union[torch.Tensor, Tuple[torch.Tensor], List[torch.Tensor]], | 
					
					
						
						| 
							 | 
						        top_k: int, | 
					
					
						
						| 
							 | 
						        num_experts: int = None, | 
					
					
						
						| 
							 | 
						        attention_mask: Optional[torch.Tensor] = None | 
					
					
						
						| 
							 | 
						) -> torch.Tensor: | 
					
					
						
						| 
							 | 
						    r""" | 
					
					
						
						| 
							 | 
						    Computes auxiliary load balancing loss as in Switch Transformer - implemented in Pytorch. | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						    See Switch Transformer (https://arxiv.org/abs/2101.03961) for more details. This function implements the loss | 
					
					
						
						| 
							 | 
						    function presented in equations (4) - (6) of the paper. It aims at penalizing cases where the routing between | 
					
					
						
						| 
							 | 
						    experts is too unbalanced. | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						    Args: | 
					
					
						
						| 
							 | 
						        gate_logits (Union[`torch.Tensor`, Tuple[torch.Tensor], List[torch.Tensor]): | 
					
					
						
						| 
							 | 
						            Logits from the `gate`, should be a tuple of model.config.num_hidden_layers tensors of | 
					
					
						
						| 
							 | 
						            shape [batch_size X sequence_length, num_experts]. | 
					
					
						
						| 
							 | 
						        top_k (`int`) | 
					
					
						
						| 
							 | 
						            Selected Top k over the experts. | 
					
					
						
						| 
							 | 
						        attention_mask (`torch.Tensor`, None): | 
					
					
						
						| 
							 | 
						            The attention_mask used in forward function | 
					
					
						
						| 
							 | 
						            shape [batch_size X sequence_length] if not None. | 
					
					
						
						| 
							 | 
						        num_experts (`int`, *optional*): | 
					
					
						
						| 
							 | 
						            Number of experts | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						    Returns: | 
					
					
						
						| 
							 | 
						        The auxiliary loss. | 
					
					
						
						| 
							 | 
						    """ | 
					
					
						
						| 
							 | 
						    if gate_logits is None or not isinstance(gate_logits, (tuple, list)) or gate_logits[0] is None: | 
					
					
						
						| 
							 | 
						        return 0.0 | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						    compute_device = gate_logits[0].device | 
					
					
						
						| 
							 | 
						    concatenated_gate_logits = torch.cat([layer_gate.to(compute_device) for layer_gate in gate_logits], dim=0) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						    routing_weights = torch.nn.functional.softmax(concatenated_gate_logits, dim=-1) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						    _, selected_experts = torch.topk(routing_weights, top_k, dim=-1) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						    expert_mask = torch.nn.functional.one_hot(selected_experts, num_experts) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						    if attention_mask is None: | 
					
					
						
						| 
							 | 
						         | 
					
					
						
						| 
							 | 
						        tokens_per_expert = torch.mean(expert_mask.float(), dim=0) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						         | 
					
					
						
						| 
							 | 
						        router_prob_per_expert = torch.mean(routing_weights, dim=0) | 
					
					
						
						| 
							 | 
						    else: | 
					
					
						
						| 
							 | 
						        batch_size, sequence_length = attention_mask.shape | 
					
					
						
						| 
							 | 
						        num_hidden_layers = concatenated_gate_logits.shape[0] // (batch_size * sequence_length) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						         | 
					
					
						
						| 
							 | 
						        expert_attention_mask = ( | 
					
					
						
						| 
							 | 
						            attention_mask[None, :, :, None, None] | 
					
					
						
						| 
							 | 
						            .expand((num_hidden_layers, batch_size, sequence_length, 2, num_experts)) | 
					
					
						
						| 
							 | 
						            .reshape(-1, 2, num_experts) | 
					
					
						
						| 
							 | 
						            .to(compute_device) | 
					
					
						
						| 
							 | 
						        ) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						         | 
					
					
						
						| 
							 | 
						        tokens_per_expert = torch.sum(expert_mask.float() * expert_attention_mask, dim=0) / torch.sum( | 
					
					
						
						| 
							 | 
						            expert_attention_mask, dim=0 | 
					
					
						
						| 
							 | 
						        ) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						         | 
					
					
						
						| 
							 | 
						        router_per_expert_attention_mask = ( | 
					
					
						
						| 
							 | 
						            attention_mask[None, :, :, None] | 
					
					
						
						| 
							 | 
						            .expand((num_hidden_layers, batch_size, sequence_length, num_experts)) | 
					
					
						
						| 
							 | 
						            .reshape(-1, num_experts) | 
					
					
						
						| 
							 | 
						            .to(compute_device) | 
					
					
						
						| 
							 | 
						        ) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						         | 
					
					
						
						| 
							 | 
						        router_prob_per_expert = torch.sum(routing_weights * router_per_expert_attention_mask, dim=0) / torch.sum( | 
					
					
						
						| 
							 | 
						            router_per_expert_attention_mask, dim=0 | 
					
					
						
						| 
							 | 
						        ) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						    overall_loss = torch.sum(tokens_per_expert * router_prob_per_expert.unsqueeze(dim=0)) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						    return overall_loss * num_experts | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						def repeat_kv(hidden_states: torch.Tensor, n_rep: int) -> torch.Tensor: | 
					
					
						
						| 
							 | 
						    """ | 
					
					
						
						| 
							 | 
						    This is the equivalent of torch.repeat_interleave(x, dim=1, repeats=n_rep). The hidden states go from (batch, | 
					
					
						
						| 
							 | 
						    num_key_value_heads, seqlen, head_dim) to (batch, num_attention_heads, seqlen, head_dim) | 
					
					
						
						| 
							 | 
						    """ | 
					
					
						
						| 
							 | 
						    batch, num_key_value_heads, slen, head_dim = hidden_states.shape | 
					
					
						
						| 
							 | 
						    if n_rep == 1: | 
					
					
						
						| 
							 | 
						        return hidden_states | 
					
					
						
						| 
							 | 
						    hidden_states = hidden_states[:, :, None, :, :].expand(batch, num_key_value_heads, n_rep, slen, head_dim) | 
					
					
						
						| 
							 | 
						    return hidden_states.reshape(batch, num_key_value_heads * n_rep, slen, head_dim) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						def rotate_half(x): | 
					
					
						
						| 
							 | 
						    """Rotates half the hidden dims of the input.""" | 
					
					
						
						| 
							 | 
						    x1 = x[..., : x.shape[-1] // 2] | 
					
					
						
						| 
							 | 
						    x2 = x[..., x.shape[-1] // 2:] | 
					
					
						
						| 
							 | 
						    return torch.cat((-x2, x1), dim=-1) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						def apply_rotary_pos_emb(q, k, cos, sin, position_ids, unsqueeze_dim=1): | 
					
					
						
						| 
							 | 
						    """Applies Rotary Position Embedding to the query and key tensors. | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						    Args: | 
					
					
						
						| 
							 | 
						        q (`torch.Tensor`): The query tensor. | 
					
					
						
						| 
							 | 
						        k (`torch.Tensor`): The key tensor. | 
					
					
						
						| 
							 | 
						        cos (`torch.Tensor`): The cosine part of the rotary embedding. | 
					
					
						
						| 
							 | 
						        sin (`torch.Tensor`): The sine part of the rotary embedding. | 
					
					
						
						| 
							 | 
						        position_ids (`torch.Tensor`): | 
					
					
						
						| 
							 | 
						            The position indices of the tokens corresponding to the query and key tensors. For example, this can be | 
					
					
						
						| 
							 | 
						            used to pass offsetted position ids when working with a KV-cache. | 
					
					
						
						| 
							 | 
						        unsqueeze_dim (`int`, *optional*, defaults to 1): | 
					
					
						
						| 
							 | 
						            The 'unsqueeze_dim' argument specifies the dimension along which to unsqueeze cos[position_ids] and | 
					
					
						
						| 
							 | 
						            sin[position_ids] so that they can be properly broadcasted to the dimensions of q and k. For example, note | 
					
					
						
						| 
							 | 
						            that cos[position_ids] and sin[position_ids] have the shape [batch_size, seq_len, head_dim]. Then, if q and | 
					
					
						
						| 
							 | 
						            k have the shape [batch_size, heads, seq_len, head_dim], then setting unsqueeze_dim=1 makes | 
					
					
						
						| 
							 | 
						            cos[position_ids] and sin[position_ids] broadcastable to the shapes of q and k. Similarly, if q and k have | 
					
					
						
						| 
							 | 
						            the shape [batch_size, seq_len, heads, head_dim], then set unsqueeze_dim=2. | 
					
					
						
						| 
							 | 
						    Returns: | 
					
					
						
						| 
							 | 
						        `tuple(torch.Tensor)` comprising of the query and key tensors rotated using the Rotary Position Embedding. | 
					
					
						
						| 
							 | 
						    """ | 
					
					
						
						| 
							 | 
						    cos = cos[position_ids].unsqueeze(unsqueeze_dim) | 
					
					
						
						| 
							 | 
						    sin = sin[position_ids].unsqueeze(unsqueeze_dim) | 
					
					
						
						| 
							 | 
						    q_embed = (q * cos) + (rotate_half(q) * sin) | 
					
					
						
						| 
							 | 
						    k_embed = (k * cos) + (rotate_half(k) * sin) | 
					
					
						
						| 
							 | 
						    return q_embed, k_embed | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						class TimeMoeInputEmbedding(nn.Module): | 
					
					
						
						| 
							 | 
						    """ | 
					
					
						
						| 
							 | 
						    Use a mlp layer to embedding the time-series. | 
					
					
						
						| 
							 | 
						    """ | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						    def __init__(self, config: TimeMoeConfig): | 
					
					
						
						| 
							 | 
						        super().__init__() | 
					
					
						
						| 
							 | 
						        self.config = config | 
					
					
						
						| 
							 | 
						        self.input_size = config.input_size   | 
					
					
						
						| 
							 | 
						        self.hidden_size = config.hidden_size | 
					
					
						
						| 
							 | 
						        self.emb_layer = nn.Linear(self.input_size, self.hidden_size, bias=False) | 
					
					
						
						| 
							 | 
						        self.gate_layer = nn.Linear(self.input_size, self.hidden_size, bias=False) | 
					
					
						
						| 
							 | 
						        self.act_fn = ACT2FN[config.hidden_act] | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						    def forward(self, x): | 
					
					
						
						| 
							 | 
						        emb = self.act_fn(self.gate_layer(x)) * self.emb_layer(x) | 
					
					
						
						| 
							 | 
						        return emb | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						class TimeMoeRotaryEmbedding(torch.nn.Module): | 
					
					
						
						| 
							 | 
						    def __init__(self, dim, max_position_embeddings=2048, base=10000, device=None): | 
					
					
						
						| 
							 | 
						        super().__init__() | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        self.dim = dim | 
					
					
						
						| 
							 | 
						        self.max_position_embeddings = max_position_embeddings | 
					
					
						
						| 
							 | 
						        self.base = base | 
					
					
						
						| 
							 | 
						        inv_freq = 1.0 / (self.base ** (torch.arange(0, self.dim, 2, dtype=torch.int64).float().to(device) / self.dim)) | 
					
					
						
						| 
							 | 
						        self.register_buffer("inv_freq", inv_freq, persistent=False) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						         | 
					
					
						
						| 
							 | 
						        self._set_cos_sin_cache( | 
					
					
						
						| 
							 | 
						            seq_len=max_position_embeddings, device=self.inv_freq.device, dtype=torch.get_default_dtype() | 
					
					
						
						| 
							 | 
						        ) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						    def _set_cos_sin_cache(self, seq_len, device, dtype): | 
					
					
						
						| 
							 | 
						        self.max_seq_len_cached = seq_len | 
					
					
						
						| 
							 | 
						        t = torch.arange(self.max_seq_len_cached, device=device, dtype=torch.int64).type_as(self.inv_freq) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        freqs = torch.outer(t, self.inv_freq) | 
					
					
						
						| 
							 | 
						         | 
					
					
						
						| 
							 | 
						        emb = torch.cat((freqs, freqs), dim=-1) | 
					
					
						
						| 
							 | 
						        self.register_buffer("cos_cached", emb.cos().to(dtype), persistent=False) | 
					
					
						
						| 
							 | 
						        self.register_buffer("sin_cached", emb.sin().to(dtype), persistent=False) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						    def forward(self, x, seq_len=None): | 
					
					
						
						| 
							 | 
						         | 
					
					
						
						| 
							 | 
						        if seq_len > self.max_seq_len_cached: | 
					
					
						
						| 
							 | 
						            self._set_cos_sin_cache(seq_len=seq_len, device=x.device, dtype=x.dtype) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        return ( | 
					
					
						
						| 
							 | 
						            self.cos_cached[:seq_len].to(dtype=x.dtype), | 
					
					
						
						| 
							 | 
						            self.sin_cached[:seq_len].to(dtype=x.dtype), | 
					
					
						
						| 
							 | 
						        ) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						class TimeMoeRMSNorm(torch.nn.Module): | 
					
					
						
						| 
							 | 
						    def __init__(self, hidden_size, eps=1e-6): | 
					
					
						
						| 
							 | 
						        super().__init__() | 
					
					
						
						| 
							 | 
						        self.weight = nn.Parameter(torch.ones(hidden_size)) | 
					
					
						
						| 
							 | 
						        self.variance_epsilon = eps | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						    def forward(self, hidden_states): | 
					
					
						
						| 
							 | 
						        input_dtype = hidden_states.dtype | 
					
					
						
						| 
							 | 
						        hidden_states = hidden_states.to(torch.float32) | 
					
					
						
						| 
							 | 
						        variance = hidden_states.pow(2).mean(-1, keepdim=True) | 
					
					
						
						| 
							 | 
						        hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon) | 
					
					
						
						| 
							 | 
						        return self.weight * hidden_states.to(input_dtype) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						class TimeMoeTemporalBlock(nn.Module): | 
					
					
						
						| 
							 | 
						    def __init__(self, hidden_size: int, intermediate_size: int, hidden_act: str): | 
					
					
						
						| 
							 | 
						        super().__init__() | 
					
					
						
						| 
							 | 
						        self.hidden_size = hidden_size | 
					
					
						
						| 
							 | 
						        self.intermediate_size = intermediate_size | 
					
					
						
						| 
							 | 
						        self.gate_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False) | 
					
					
						
						| 
							 | 
						        self.up_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False) | 
					
					
						
						| 
							 | 
						        self.down_proj = nn.Linear(self.intermediate_size, self.hidden_size, bias=False) | 
					
					
						
						| 
							 | 
						        self.act_fn = ACT2FN[hidden_act] | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						    def forward(self, hidden_state): | 
					
					
						
						| 
							 | 
						        return self.down_proj(self.act_fn(self.gate_proj(hidden_state)) * self.up_proj(hidden_state)) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						class TimeMoeMLP(TimeMoeTemporalBlock): | 
					
					
						
						| 
							 | 
						    def __init__(self, hidden_size: int, intermediate_size: int, hidden_act: str): | 
					
					
						
						| 
							 | 
						        super().__init__(hidden_size, intermediate_size, hidden_act) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						    def forward(self, hidden_state): | 
					
					
						
						| 
							 | 
						        return super().forward(hidden_state), None | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						class TimeMoeSparseExpertsLayer(nn.Module): | 
					
					
						
						| 
							 | 
						    def __init__(self, config): | 
					
					
						
						| 
							 | 
						        super().__init__() | 
					
					
						
						| 
							 | 
						        self.config = config | 
					
					
						
						| 
							 | 
						        self.top_k = config.num_experts_per_tok | 
					
					
						
						| 
							 | 
						        self.hidden_size = config.hidden_size | 
					
					
						
						| 
							 | 
						        self.num_experts = config.num_experts | 
					
					
						
						| 
							 | 
						        self.norm_topk_prob = False | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        moe_intermediate_size = self.config.intermediate_size // self.top_k | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						         | 
					
					
						
						| 
							 | 
						        self.gate = nn.Linear(config.hidden_size, config.num_experts, bias=False) | 
					
					
						
						| 
							 | 
						        self.experts = nn.ModuleList( | 
					
					
						
						| 
							 | 
						            [TimeMoeTemporalBlock( | 
					
					
						
						| 
							 | 
						                hidden_size=self.config.hidden_size, | 
					
					
						
						| 
							 | 
						                intermediate_size=moe_intermediate_size, | 
					
					
						
						| 
							 | 
						                hidden_act=self.config.hidden_act, | 
					
					
						
						| 
							 | 
						            ) for _ in range(self.num_experts)] | 
					
					
						
						| 
							 | 
						        ) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        self.shared_expert = TimeMoeTemporalBlock( | 
					
					
						
						| 
							 | 
						            hidden_size=self.config.hidden_size, | 
					
					
						
						| 
							 | 
						            intermediate_size=self.config.intermediate_size, | 
					
					
						
						| 
							 | 
						            hidden_act=self.config.hidden_act, | 
					
					
						
						| 
							 | 
						        ) | 
					
					
						
						| 
							 | 
						        self.shared_expert_gate = torch.nn.Linear(config.hidden_size, 1, bias=False) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						    def forward(self, hidden_states: torch.Tensor): | 
					
					
						
						| 
							 | 
						        """ """ | 
					
					
						
						| 
							 | 
						        batch_size, sequence_length, hidden_dim = hidden_states.shape | 
					
					
						
						| 
							 | 
						        hidden_states = hidden_states.view(-1, hidden_dim) | 
					
					
						
						| 
							 | 
						         | 
					
					
						
						| 
							 | 
						        router_logits = self.gate(hidden_states) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        routing_weights = F.softmax(router_logits, dim=1, dtype=torch.float) | 
					
					
						
						| 
							 | 
						        routing_weights, selected_experts = torch.topk(routing_weights, self.top_k, dim=-1) | 
					
					
						
						| 
							 | 
						        if self.norm_topk_prob: | 
					
					
						
						| 
							 | 
						            routing_weights /= routing_weights.sum(dim=-1, keepdim=True) | 
					
					
						
						| 
							 | 
						         | 
					
					
						
						| 
							 | 
						        routing_weights = routing_weights.to(hidden_states.dtype) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        final_hidden_states = torch.zeros( | 
					
					
						
						| 
							 | 
						            (batch_size * sequence_length, hidden_dim), dtype=hidden_states.dtype, device=hidden_states.device | 
					
					
						
						| 
							 | 
						        ) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						         | 
					
					
						
						| 
							 | 
						         | 
					
					
						
						| 
							 | 
						        expert_mask = torch.nn.functional.one_hot(selected_experts, num_classes=self.num_experts).permute(2, 1, 0) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						         | 
					
					
						
						| 
							 | 
						        for expert_idx in range(self.num_experts): | 
					
					
						
						| 
							 | 
						            expert_layer = self.experts[expert_idx] | 
					
					
						
						| 
							 | 
						            idx, top_x = torch.where(expert_mask[expert_idx]) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						             | 
					
					
						
						| 
							 | 
						             | 
					
					
						
						| 
							 | 
						             | 
					
					
						
						| 
							 | 
						            current_state = hidden_states[None, top_x].reshape(-1, hidden_dim) | 
					
					
						
						| 
							 | 
						            current_hidden_states = expert_layer(current_state) * routing_weights[top_x, idx, None] | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						             | 
					
					
						
						| 
							 | 
						             | 
					
					
						
						| 
							 | 
						            final_hidden_states.index_add_(0, top_x, current_hidden_states.to(hidden_states.dtype)) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        shared_expert_output = self.shared_expert(hidden_states) | 
					
					
						
						| 
							 | 
						        shared_expert_output = F.sigmoid(self.shared_expert_gate(hidden_states)) * shared_expert_output | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        final_hidden_states = final_hidden_states + shared_expert_output | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        final_hidden_states = final_hidden_states.reshape(batch_size, sequence_length, hidden_dim) | 
					
					
						
						| 
							 | 
						        return final_hidden_states, router_logits | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						class TimeMoeAttention(nn.Module): | 
					
					
						
						| 
							 | 
						    """ | 
					
					
						
						| 
							 | 
						    Multi-headed attention from 'Attention Is All You Need' paper. Modified to use sliding window attention: Longformer | 
					
					
						
						| 
							 | 
						    and "Generating Long Sequences with Sparse Transformers". | 
					
					
						
						| 
							 | 
						    """ | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						    def __init__(self, config: TimeMoeConfig, layer_idx: Optional[int] = None): | 
					
					
						
						| 
							 | 
						        super().__init__() | 
					
					
						
						| 
							 | 
						        self.config = config | 
					
					
						
						| 
							 | 
						        self.layer_idx = layer_idx | 
					
					
						
						| 
							 | 
						        if layer_idx is None: | 
					
					
						
						| 
							 | 
						            logger.warning_once( | 
					
					
						
						| 
							 | 
						                f"Instantiating {self.__class__.__name__} without passing `layer_idx` is not recommended and will " | 
					
					
						
						| 
							 | 
						                "to errors during the forward call, if caching is used. Please make sure to provide a `layer_idx` " | 
					
					
						
						| 
							 | 
						                "when creating this class." | 
					
					
						
						| 
							 | 
						            ) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        self.hidden_size = config.hidden_size | 
					
					
						
						| 
							 | 
						        self.num_heads = config.num_attention_heads | 
					
					
						
						| 
							 | 
						        self.head_dim = self.hidden_size // self.num_heads | 
					
					
						
						| 
							 | 
						        self.num_key_value_heads = config.num_key_value_heads | 
					
					
						
						| 
							 | 
						        self.num_key_value_groups = self.num_heads // self.num_key_value_heads | 
					
					
						
						| 
							 | 
						        self.max_position_embeddings = config.max_position_embeddings | 
					
					
						
						| 
							 | 
						        self.rope_theta = config.rope_theta | 
					
					
						
						| 
							 | 
						        self.is_causal = True | 
					
					
						
						| 
							 | 
						        self.attention_dropout = config.attention_dropout | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        if (self.head_dim * self.num_heads) != self.hidden_size: | 
					
					
						
						| 
							 | 
						            raise ValueError( | 
					
					
						
						| 
							 | 
						                f"hidden_size must be divisible by num_heads (got `hidden_size`: {self.hidden_size}" | 
					
					
						
						| 
							 | 
						                f" and `num_heads`: {self.num_heads})." | 
					
					
						
						| 
							 | 
						            ) | 
					
					
						
						| 
							 | 
						        self.q_proj = nn.Linear(self.hidden_size, self.num_heads * self.head_dim, bias=True) | 
					
					
						
						| 
							 | 
						        self.k_proj = nn.Linear(self.hidden_size, self.num_key_value_heads * self.head_dim, bias=True) | 
					
					
						
						| 
							 | 
						        self.v_proj = nn.Linear(self.hidden_size, self.num_key_value_heads * self.head_dim, bias=True) | 
					
					
						
						| 
							 | 
						        self.o_proj = nn.Linear(self.num_heads * self.head_dim, self.hidden_size, bias=False) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        self.rotary_emb = TimeMoeRotaryEmbedding( | 
					
					
						
						| 
							 | 
						            self.head_dim, | 
					
					
						
						| 
							 | 
						            max_position_embeddings=self.max_position_embeddings, | 
					
					
						
						| 
							 | 
						            base=self.rope_theta, | 
					
					
						
						| 
							 | 
						        ) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						    def forward( | 
					
					
						
						| 
							 | 
						            self, | 
					
					
						
						| 
							 | 
						            hidden_states: torch.Tensor, | 
					
					
						
						| 
							 | 
						            attention_mask: Optional[torch.Tensor] = None, | 
					
					
						
						| 
							 | 
						            position_ids: Optional[torch.LongTensor] = None, | 
					
					
						
						| 
							 | 
						            past_key_value: Optional[Cache] = None, | 
					
					
						
						| 
							 | 
						            output_attentions: bool = False, | 
					
					
						
						| 
							 | 
						            **kwargs, | 
					
					
						
						| 
							 | 
						    ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]: | 
					
					
						
						| 
							 | 
						        if "padding_mask" in kwargs: | 
					
					
						
						| 
							 | 
						            warnings.warn( | 
					
					
						
						| 
							 | 
						                "Passing `padding_mask` is deprecated and will be removed in v4.37. Please make sure use `attention_mask` instead.`" | 
					
					
						
						| 
							 | 
						            ) | 
					
					
						
						| 
							 | 
						        bsz, q_len, _ = hidden_states.size() | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        query_states = self.q_proj(hidden_states) | 
					
					
						
						| 
							 | 
						        key_states = self.k_proj(hidden_states) | 
					
					
						
						| 
							 | 
						        value_states = self.v_proj(hidden_states) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2) | 
					
					
						
						| 
							 | 
						        key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2) | 
					
					
						
						| 
							 | 
						        value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        kv_seq_len = key_states.shape[-2] | 
					
					
						
						| 
							 | 
						        if past_key_value is not None: | 
					
					
						
						| 
							 | 
						            if self.layer_idx is None: | 
					
					
						
						| 
							 | 
						                raise ValueError( | 
					
					
						
						| 
							 | 
						                    f"The cache structure has changed since version v4.36. If you are using {self.__class__.__name__} " | 
					
					
						
						| 
							 | 
						                    "for auto-regressive decoding with k/v caching, please make sure to initialize the attention class " | 
					
					
						
						| 
							 | 
						                    "with a layer index." | 
					
					
						
						| 
							 | 
						                ) | 
					
					
						
						| 
							 | 
						            kv_seq_len += past_key_value.get_usable_length(kv_seq_len, self.layer_idx) | 
					
					
						
						| 
							 | 
						        cos, sin = self.rotary_emb(value_states, seq_len=kv_seq_len) | 
					
					
						
						| 
							 | 
						        query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin, position_ids) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        if past_key_value is not None: | 
					
					
						
						| 
							 | 
						            cache_kwargs = {"sin": sin, "cos": cos}   | 
					
					
						
						| 
							 | 
						            key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						         | 
					
					
						
						| 
							 | 
						        key_states = repeat_kv(key_states, self.num_key_value_groups) | 
					
					
						
						| 
							 | 
						        value_states = repeat_kv(value_states, self.num_key_value_groups) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        attn_weights = torch.matmul(query_states, key_states.transpose(2, 3)) / math.sqrt(self.head_dim) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        if attn_weights.size() != (bsz, self.num_heads, q_len, kv_seq_len): | 
					
					
						
						| 
							 | 
						            raise ValueError( | 
					
					
						
						| 
							 | 
						                f"Attention weights should be of size {(bsz, self.num_heads, q_len, kv_seq_len)}, but is" | 
					
					
						
						| 
							 | 
						                f" {attn_weights.size()}" | 
					
					
						
						| 
							 | 
						            ) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        if attention_mask is not None: | 
					
					
						
						| 
							 | 
						            if attention_mask.size() != (bsz, 1, q_len, kv_seq_len): | 
					
					
						
						| 
							 | 
						                raise ValueError( | 
					
					
						
						| 
							 | 
						                    f"Attention mask should be of size {(bsz, 1, q_len, kv_seq_len)}, but is {attention_mask.size()}" | 
					
					
						
						| 
							 | 
						                ) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						            attn_weights = attn_weights + attention_mask | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						         | 
					
					
						
						| 
							 | 
						        attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(query_states.dtype) | 
					
					
						
						| 
							 | 
						        attn_weights = nn.functional.dropout(attn_weights, p=self.attention_dropout, training=self.training) | 
					
					
						
						| 
							 | 
						        attn_output = torch.matmul(attn_weights, value_states) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        if attn_output.size() != (bsz, self.num_heads, q_len, self.head_dim): | 
					
					
						
						| 
							 | 
						            raise ValueError( | 
					
					
						
						| 
							 | 
						                f"`attn_output` should be of size {(bsz, self.num_heads, q_len, self.head_dim)}, but is" | 
					
					
						
						| 
							 | 
						                f" {attn_output.size()}" | 
					
					
						
						| 
							 | 
						            ) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        attn_output = attn_output.transpose(1, 2).contiguous() | 
					
					
						
						| 
							 | 
						        attn_output = attn_output.reshape(bsz, q_len, self.hidden_size) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        attn_output = self.o_proj(attn_output) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        if not output_attentions: | 
					
					
						
						| 
							 | 
						            attn_weights = None | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        return attn_output, attn_weights, past_key_value | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						class TimeMoeFlashAttention2(TimeMoeAttention): | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						    def __init__(self, *args, **kwargs): | 
					
					
						
						| 
							 | 
						        super().__init__(*args, **kwargs) | 
					
					
						
						| 
							 | 
						        self._flash_attn_uses_top_left_mask = not is_flash_attn_greater_or_equal_2_10() | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						    def forward( | 
					
					
						
						| 
							 | 
						            self, | 
					
					
						
						| 
							 | 
						            hidden_states: torch.Tensor, | 
					
					
						
						| 
							 | 
						            attention_mask: Optional[torch.LongTensor] = None, | 
					
					
						
						| 
							 | 
						            position_ids: Optional[torch.LongTensor] = None, | 
					
					
						
						| 
							 | 
						            past_key_value: Optional[Cache] = None, | 
					
					
						
						| 
							 | 
						            output_attentions: bool = False, | 
					
					
						
						| 
							 | 
						            use_cache: bool = False, | 
					
					
						
						| 
							 | 
						            cache_position: Optional[torch.LongTensor] = None, | 
					
					
						
						| 
							 | 
						    ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]: | 
					
					
						
						| 
							 | 
						        if isinstance(past_key_value, StaticCache): | 
					
					
						
						| 
							 | 
						            raise ValueError( | 
					
					
						
						| 
							 | 
						                "`static` cache implementation is not compatible with `attn_implementation==flash_attention_2` " | 
					
					
						
						| 
							 | 
						                "make sure to use `sdpa` in the mean time, and open an issue at https://github.com/huggingface/transformers" | 
					
					
						
						| 
							 | 
						            ) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        output_attentions = False | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        bsz, q_len, _ = hidden_states.size() | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        query_states = self.q_proj(hidden_states) | 
					
					
						
						| 
							 | 
						        key_states = self.k_proj(hidden_states) | 
					
					
						
						| 
							 | 
						        value_states = self.v_proj(hidden_states) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						         | 
					
					
						
						| 
							 | 
						         | 
					
					
						
						| 
							 | 
						         | 
					
					
						
						| 
							 | 
						        query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2) | 
					
					
						
						| 
							 | 
						        key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2) | 
					
					
						
						| 
							 | 
						        value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        kv_seq_len = key_states.shape[-2] | 
					
					
						
						| 
							 | 
						        if past_key_value is not None: | 
					
					
						
						| 
							 | 
						            if self.layer_idx is None: | 
					
					
						
						| 
							 | 
						                raise ValueError( | 
					
					
						
						| 
							 | 
						                    f"The cache structure has changed since version v4.36. If you are using {self.__class__.__name__} " | 
					
					
						
						| 
							 | 
						                    "for auto-regressive decoding with k/v caching, please make sure to initialize the attention class " | 
					
					
						
						| 
							 | 
						                    "with a layer index." | 
					
					
						
						| 
							 | 
						                ) | 
					
					
						
						| 
							 | 
						            kv_seq_len += past_key_value.get_usable_length(kv_seq_len, self.layer_idx) | 
					
					
						
						| 
							 | 
						        rotary_seq_len = max(kv_seq_len, position_ids[:, -1].max().item()) + 1 | 
					
					
						
						| 
							 | 
						        cos, sin = self.rotary_emb(value_states, seq_len=rotary_seq_len) | 
					
					
						
						| 
							 | 
						        query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin, position_ids) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        if past_key_value is not None: | 
					
					
						
						| 
							 | 
						             | 
					
					
						
						| 
							 | 
						            cache_kwargs = {"sin": sin, "cos": cos, "cache_position": cache_position} | 
					
					
						
						| 
							 | 
						            key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						         | 
					
					
						
						| 
							 | 
						         | 
					
					
						
						| 
							 | 
						        query_states = query_states.transpose(1, 2) | 
					
					
						
						| 
							 | 
						        key_states = key_states.transpose(1, 2) | 
					
					
						
						| 
							 | 
						        value_states = value_states.transpose(1, 2) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        dropout_rate = self.attention_dropout if self.training else 0.0 | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						         | 
					
					
						
						| 
							 | 
						         | 
					
					
						
						| 
							 | 
						         | 
					
					
						
						| 
							 | 
						         | 
					
					
						
						| 
							 | 
						         | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        input_dtype = query_states.dtype | 
					
					
						
						| 
							 | 
						        if input_dtype == torch.float32: | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						            if torch.is_autocast_enabled(): | 
					
					
						
						| 
							 | 
						                target_dtype = torch.get_autocast_gpu_dtype() | 
					
					
						
						| 
							 | 
						             | 
					
					
						
						| 
							 | 
						            elif hasattr(self.config, "_pre_quantization_dtype"): | 
					
					
						
						| 
							 | 
						                target_dtype = self.config._pre_quantization_dtype | 
					
					
						
						| 
							 | 
						            else: | 
					
					
						
						| 
							 | 
						                target_dtype = self.q_proj.weight.dtype | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						            logger.warning_once( | 
					
					
						
						| 
							 | 
						                f"The input hidden states seems to be silently casted in float32, this might be related to" | 
					
					
						
						| 
							 | 
						                f" the fact you have upcasted embedding or layer norm layers in float32. We will cast back the input in" | 
					
					
						
						| 
							 | 
						                f" {target_dtype}." | 
					
					
						
						| 
							 | 
						            ) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						            query_states = query_states.to(target_dtype) | 
					
					
						
						| 
							 | 
						            key_states = key_states.to(target_dtype) | 
					
					
						
						| 
							 | 
						            value_states = value_states.to(target_dtype) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        attn_output = self._flash_attention_forward( | 
					
					
						
						| 
							 | 
						            query_states, key_states, value_states, attention_mask, q_len, dropout=dropout_rate | 
					
					
						
						| 
							 | 
						        ) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        attn_output = attn_output.reshape(bsz, q_len, -1).contiguous() | 
					
					
						
						| 
							 | 
						        attn_output = self.o_proj(attn_output) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        if not output_attentions: | 
					
					
						
						| 
							 | 
						            attn_weights = None | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        return attn_output, attn_weights, past_key_value | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						    def _flash_attention_forward( | 
					
					
						
						| 
							 | 
						            self, query_states, key_states, value_states, attention_mask, query_length, dropout=0.0, softmax_scale=None | 
					
					
						
						| 
							 | 
						    ): | 
					
					
						
						| 
							 | 
						        """ | 
					
					
						
						| 
							 | 
						        Calls the forward method of Flash Attention - if the input hidden states contain at least one padding token | 
					
					
						
						| 
							 | 
						        first unpad the input, then computes the attention scores and pad the final attention scores. | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						        Args: | 
					
					
						
						| 
							 | 
						            query_states (`torch.Tensor`): | 
					
					
						
						| 
							 | 
						                Input query states to be passed to Flash Attention API | 
					
					
						
						| 
							 | 
						            key_states (`torch.Tensor`): | 
					
					
						
						| 
							 | 
						                Input key states to be passed to Flash Attention API | 
					
					
						
						| 
							 | 
						            value_states (`torch.Tensor`): | 
					
					
						
						| 
							 | 
						                Input value states to be passed to Flash Attention API | 
					
					
						
						| 
							 | 
						            attention_mask (`torch.Tensor`): | 
					
					
						
						| 
							 | 
						                The padding mask - corresponds to a tensor of size `(batch_size, seq_len)` where 0 stands for the | 
					
					
						
						| 
							 | 
						                position of padding tokens and 1 for the position of non-padding tokens. | 
					
					
						
						| 
							 | 
						            dropout (`float`): | 
					
					
						
						| 
							 | 
						                Attention dropout | 
					
					
						
						| 
							 | 
						            softmax_scale (`float`, *optional*): | 
					
					
						
						| 
							 | 
						                The scaling of QK^T before applying softmax. Default to 1 / sqrt(head_dim) | 
					
					
						
						| 
							 | 
						        """ | 
					
					
						
						| 
							 | 
						        if not self._flash_attn_uses_top_left_mask: | 
					
					
						
						| 
							 | 
						            causal = self.is_causal | 
					
					
						
						| 
							 | 
						        else: | 
					
					
						
						| 
							 | 
						             | 
					
					
						
						| 
							 | 
						            causal = self.is_causal and query_length != 1 | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        origin_dtype = query_states.dtype | 
					
					
						
						| 
							 | 
						        if origin_dtype not in [torch.bfloat16, torch.float16]: | 
					
					
						
						| 
							 | 
						            query_states = query_states.to(dtype=torch.bfloat16) | 
					
					
						
						| 
							 | 
						            key_states = key_states.to(dtype=torch.bfloat16) | 
					
					
						
						| 
							 | 
						            value_states = value_states.to(dtype=torch.bfloat16) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						         | 
					
					
						
						| 
							 | 
						        attn_output = flash_attn_func( | 
					
					
						
						| 
							 | 
						            query_states, | 
					
					
						
						| 
							 | 
						            key_states, | 
					
					
						
						| 
							 | 
						            value_states, | 
					
					
						
						| 
							 | 
						            dropout, | 
					
					
						
						| 
							 | 
						            softmax_scale=softmax_scale, | 
					
					
						
						| 
							 | 
						            causal=causal | 
					
					
						
						| 
							 | 
						        ) | 
					
					
						
						| 
							 | 
						        if origin_dtype not in [torch.bfloat16, torch.float16]: | 
					
					
						
						| 
							 | 
						            return attn_output.to(origin_dtype) | 
					
					
						
						| 
							 | 
						        else: | 
					
					
						
						| 
							 | 
						            return attn_output | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						    def _upad_input(self, query_layer, key_layer, value_layer, attention_mask, query_length): | 
					
					
						
						| 
							 | 
						        indices_k, cu_seqlens_k, max_seqlen_in_batch_k = _get_unpad_data(attention_mask) | 
					
					
						
						| 
							 | 
						        batch_size, kv_seq_len, num_key_value_heads, head_dim = key_layer.shape | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        key_layer = index_first_axis( | 
					
					
						
						| 
							 | 
						            key_layer.reshape(batch_size * kv_seq_len, num_key_value_heads, head_dim), indices_k | 
					
					
						
						| 
							 | 
						        ) | 
					
					
						
						| 
							 | 
						        value_layer = index_first_axis( | 
					
					
						
						| 
							 | 
						            value_layer.reshape(batch_size * kv_seq_len, num_key_value_heads, head_dim), indices_k | 
					
					
						
						| 
							 | 
						        ) | 
					
					
						
						| 
							 | 
						        if query_length == kv_seq_len: | 
					
					
						
						| 
							 | 
						            query_layer = index_first_axis( | 
					
					
						
						| 
							 | 
						                query_layer.reshape(batch_size * kv_seq_len, self.num_heads, head_dim), indices_k | 
					
					
						
						| 
							 | 
						            ) | 
					
					
						
						| 
							 | 
						            cu_seqlens_q = cu_seqlens_k | 
					
					
						
						| 
							 | 
						            max_seqlen_in_batch_q = max_seqlen_in_batch_k | 
					
					
						
						| 
							 | 
						            indices_q = indices_k | 
					
					
						
						| 
							 | 
						        elif query_length == 1: | 
					
					
						
						| 
							 | 
						            max_seqlen_in_batch_q = 1 | 
					
					
						
						| 
							 | 
						            cu_seqlens_q = torch.arange( | 
					
					
						
						| 
							 | 
						                batch_size + 1, dtype=torch.int32, device=query_layer.device | 
					
					
						
						| 
							 | 
						            )   | 
					
					
						
						| 
							 | 
						            indices_q = cu_seqlens_q[:-1] | 
					
					
						
						| 
							 | 
						            query_layer = query_layer.squeeze(1) | 
					
					
						
						| 
							 | 
						        else: | 
					
					
						
						| 
							 | 
						             | 
					
					
						
						| 
							 | 
						            attention_mask = attention_mask[:, -query_length:] | 
					
					
						
						| 
							 | 
						            query_layer, indices_q, cu_seqlens_q, max_seqlen_in_batch_q = unpad_input(query_layer, attention_mask) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        return ( | 
					
					
						
						| 
							 | 
						            query_layer, | 
					
					
						
						| 
							 | 
						            key_layer, | 
					
					
						
						| 
							 | 
						            value_layer, | 
					
					
						
						| 
							 | 
						            indices_q, | 
					
					
						
						| 
							 | 
						            (cu_seqlens_q, cu_seqlens_k), | 
					
					
						
						| 
							 | 
						            (max_seqlen_in_batch_q, max_seqlen_in_batch_k), | 
					
					
						
						| 
							 | 
						        ) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						TIME_MOE_ATTENTION_CLASSES = { | 
					
					
						
						| 
							 | 
						    "eager": TimeMoeAttention, | 
					
					
						
						| 
							 | 
						    'flash_attention_2': TimeMoeFlashAttention2, | 
					
					
						
						| 
							 | 
						} | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						class TimeMoeDecoderLayer(nn.Module): | 
					
					
						
						| 
							 | 
						    def __init__(self, config: TimeMoeConfig, layer_idx: int): | 
					
					
						
						| 
							 | 
						        super().__init__() | 
					
					
						
						| 
							 | 
						        self.config = config | 
					
					
						
						| 
							 | 
						        self.hidden_size = config.hidden_size | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        self.self_attn = TIME_MOE_ATTENTION_CLASSES[config._attn_implementation](config, layer_idx) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        if self.config.use_dense: | 
					
					
						
						| 
							 | 
						            self.ffn_layer = TimeMoeMLP( | 
					
					
						
						| 
							 | 
						                hidden_size=self.config.hidden_size, | 
					
					
						
						| 
							 | 
						                intermediate_size=self.config.intermediate_size, | 
					
					
						
						| 
							 | 
						                hidden_act=self.config.hidden_act, | 
					
					
						
						| 
							 | 
						            ) | 
					
					
						
						| 
							 | 
						        else: | 
					
					
						
						| 
							 | 
						            self.ffn_layer = TimeMoeSparseExpertsLayer(config) | 
					
					
						
						| 
							 | 
						        self.input_layernorm = TimeMoeRMSNorm(config.hidden_size, eps=config.rms_norm_eps) | 
					
					
						
						| 
							 | 
						        self.post_attention_layernorm = TimeMoeRMSNorm(config.hidden_size, eps=config.rms_norm_eps) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						    def forward( | 
					
					
						
						| 
							 | 
						            self, | 
					
					
						
						| 
							 | 
						            hidden_states: torch.Tensor, | 
					
					
						
						| 
							 | 
						            attention_mask: Optional[torch.Tensor] = None, | 
					
					
						
						| 
							 | 
						            position_ids: Optional[torch.LongTensor] = None, | 
					
					
						
						| 
							 | 
						            past_key_value: Optional[Tuple[torch.Tensor]] = None, | 
					
					
						
						| 
							 | 
						            output_attentions: Optional[bool] = False, | 
					
					
						
						| 
							 | 
						            use_cache: Optional[bool] = False, | 
					
					
						
						| 
							 | 
						            **kwargs, | 
					
					
						
						| 
							 | 
						    ) -> Tuple[torch.FloatTensor, torch.FloatTensor, Optional[torch.FloatTensor], Optional[torch.FloatTensor]]: | 
					
					
						
						| 
							 | 
						        if "padding_mask" in kwargs: | 
					
					
						
						| 
							 | 
						            warnings.warn( | 
					
					
						
						| 
							 | 
						                "Passing `padding_mask` is deprecated and will be removed in v4.37. " | 
					
					
						
						| 
							 | 
						                "Please make sure use `attention_mask` instead.`" | 
					
					
						
						| 
							 | 
						            ) | 
					
					
						
						| 
							 | 
						        """ | 
					
					
						
						| 
							 | 
						        Args: | 
					
					
						
						| 
							 | 
						            hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)` | 
					
					
						
						| 
							 | 
						            attention_mask (`torch.FloatTensor`, *optional*): attention mask of size | 
					
					
						
						| 
							 | 
						                `(batch, sequence_length)` where padding elements are indicated by 0. | 
					
					
						
						| 
							 | 
						            output_attentions (`bool`, *optional*): | 
					
					
						
						| 
							 | 
						                Whether or not to return the attentions tensors of all attention layers. See `attentions` under | 
					
					
						
						| 
							 | 
						                returned tensors for more detail. | 
					
					
						
						| 
							 | 
						            use_cache (`bool`, *optional*): | 
					
					
						
						| 
							 | 
						                If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding | 
					
					
						
						| 
							 | 
						                (see `past_key_values`). | 
					
					
						
						| 
							 | 
						            past_key_value (`Tuple(torch.FloatTensor)`, *optional*): cached past key and value projection states | 
					
					
						
						| 
							 | 
						        """ | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        residual = hidden_states | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        hidden_states = self.input_layernorm(hidden_states) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						         | 
					
					
						
						| 
							 | 
						        hidden_states, self_attn_weights, present_key_value = self.self_attn( | 
					
					
						
						| 
							 | 
						            hidden_states=hidden_states, | 
					
					
						
						| 
							 | 
						            attention_mask=attention_mask, | 
					
					
						
						| 
							 | 
						            position_ids=position_ids, | 
					
					
						
						| 
							 | 
						            past_key_value=past_key_value, | 
					
					
						
						| 
							 | 
						            output_attentions=output_attentions, | 
					
					
						
						| 
							 | 
						            use_cache=use_cache, | 
					
					
						
						| 
							 | 
						        ) | 
					
					
						
						| 
							 | 
						        hidden_states = residual + hidden_states | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						         | 
					
					
						
						| 
							 | 
						        residual = hidden_states | 
					
					
						
						| 
							 | 
						        hidden_states = self.post_attention_layernorm(hidden_states) | 
					
					
						
						| 
							 | 
						        hidden_states, router_logits = self.ffn_layer(hidden_states) | 
					
					
						
						| 
							 | 
						        hidden_states = residual + hidden_states | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        if not output_attentions: | 
					
					
						
						| 
							 | 
						            self_attn_weights = None | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        if not use_cache: | 
					
					
						
						| 
							 | 
						            present_key_value = None | 
					
					
						
						| 
							 | 
						        return hidden_states, self_attn_weights, present_key_value, router_logits | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						class TimeMoePreTrainedModel(PreTrainedModel): | 
					
					
						
						| 
							 | 
						    config_class = TimeMoeConfig | 
					
					
						
						| 
							 | 
						    base_model_prefix = "model" | 
					
					
						
						| 
							 | 
						    supports_gradient_checkpointing = True | 
					
					
						
						| 
							 | 
						    _no_split_modules = ["TimeMoeDecoderLayer"] | 
					
					
						
						| 
							 | 
						    _skip_keys_device_placement = "past_key_values" | 
					
					
						
						| 
							 | 
						    _supports_flash_attn_2 = True | 
					
					
						
						| 
							 | 
						    _supports_sdpa = False | 
					
					
						
						| 
							 | 
						    _supports_cache_class = True | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						    def _init_weights(self, module): | 
					
					
						
						| 
							 | 
						        std = self.config.initializer_range | 
					
					
						
						| 
							 | 
						        if isinstance(module, torch.nn.Linear): | 
					
					
						
						| 
							 | 
						            module.weight.data.normal_(mean=0.0, std=std) | 
					
					
						
						| 
							 | 
						            if module.bias is not None: | 
					
					
						
						| 
							 | 
						                module.bias.data.zero_() | 
					
					
						
						| 
							 | 
						        elif isinstance(module, torch.nn.Embedding): | 
					
					
						
						| 
							 | 
						            module.weight.data.normal_(mean=0.0, std=std) | 
					
					
						
						| 
							 | 
						            if module.padding_idx is not None: | 
					
					
						
						| 
							 | 
						                module.weight.data[module.padding_idx].zero_() | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						class TimeMoeModel(TimeMoePreTrainedModel): | 
					
					
						
						| 
							 | 
						    """ | 
					
					
						
						| 
							 | 
						    Transformer decoder consisting of *config.num_hidden_layers* layers. Each layer is a [`TimeMoeDecoderLayer`] | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						    Args: | 
					
					
						
						| 
							 | 
						        config: TimeMoeConfig | 
					
					
						
						| 
							 | 
						    """ | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						    def __init__(self, config: TimeMoeConfig): | 
					
					
						
						| 
							 | 
						        super().__init__(config) | 
					
					
						
						| 
							 | 
						        self.embed_layer = TimeMoeInputEmbedding(config) | 
					
					
						
						| 
							 | 
						        self.layers = nn.ModuleList( | 
					
					
						
						| 
							 | 
						            [TimeMoeDecoderLayer(config, layer_idx) for layer_idx in range(config.num_hidden_layers)] | 
					
					
						
						| 
							 | 
						        ) | 
					
					
						
						| 
							 | 
						        self._attn_implementation = config._attn_implementation | 
					
					
						
						| 
							 | 
						        self.norm = TimeMoeRMSNorm(config.hidden_size, eps=config.rms_norm_eps) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        self.gradient_checkpointing = False | 
					
					
						
						| 
							 | 
						         | 
					
					
						
						| 
							 | 
						        self.post_init() | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						    def forward( | 
					
					
						
						| 
							 | 
						            self, | 
					
					
						
						| 
							 | 
						            input_ids: torch.FloatTensor = None, | 
					
					
						
						| 
							 | 
						            attention_mask: Optional[torch.Tensor] = None, | 
					
					
						
						| 
							 | 
						            position_ids: Optional[torch.LongTensor] = None, | 
					
					
						
						| 
							 | 
						            past_key_values: Optional[List[torch.FloatTensor]] = None, | 
					
					
						
						| 
							 | 
						            inputs_embeds: Optional[torch.FloatTensor] = None, | 
					
					
						
						| 
							 | 
						            use_cache: Optional[bool] = None, | 
					
					
						
						| 
							 | 
						            output_attentions: Optional[bool] = None, | 
					
					
						
						| 
							 | 
						            output_hidden_states: Optional[bool] = None, | 
					
					
						
						| 
							 | 
						            return_dict: Optional[bool] = None, | 
					
					
						
						| 
							 | 
						    ) -> Union[Tuple, MoeModelOutputWithPast]: | 
					
					
						
						| 
							 | 
						         | 
					
					
						
						| 
							 | 
						        output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions | 
					
					
						
						| 
							 | 
						        output_hidden_states = ( | 
					
					
						
						| 
							 | 
						            output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states | 
					
					
						
						| 
							 | 
						        ) | 
					
					
						
						| 
							 | 
						        use_cache = use_cache if use_cache is not None else self.config.use_cache | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        return_dict = return_dict if return_dict is not None else self.config.use_return_dict | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						         | 
					
					
						
						| 
							 | 
						        if input_ids is not None and inputs_embeds is not None: | 
					
					
						
						| 
							 | 
						            raise ValueError("You cannot specify both decoder_input_ids and decoder_inputs_embeds at the same time") | 
					
					
						
						| 
							 | 
						        elif input_ids is not None: | 
					
					
						
						| 
							 | 
						            if len(input_ids.shape) == 2: | 
					
					
						
						| 
							 | 
						                input_ids.unsqueeze_(dim=-1) | 
					
					
						
						| 
							 | 
						            batch_size, seq_length, _ = input_ids.shape | 
					
					
						
						| 
							 | 
						        elif inputs_embeds is not None: | 
					
					
						
						| 
							 | 
						            batch_size, seq_length, _ = inputs_embeds.shape | 
					
					
						
						| 
							 | 
						        else: | 
					
					
						
						| 
							 | 
						            raise ValueError("You have to specify either decoder_input_ids or decoder_inputs_embeds") | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        if self.gradient_checkpointing and self.training: | 
					
					
						
						| 
							 | 
						            if use_cache: | 
					
					
						
						| 
							 | 
						                logger.warning_once( | 
					
					
						
						| 
							 | 
						                    "`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..." | 
					
					
						
						| 
							 | 
						                ) | 
					
					
						
						| 
							 | 
						                use_cache = False | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        past_key_values_length = 0 | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        if use_cache: | 
					
					
						
						| 
							 | 
						            use_legacy_cache = not isinstance(past_key_values, Cache) | 
					
					
						
						| 
							 | 
						            if use_legacy_cache: | 
					
					
						
						| 
							 | 
						                past_key_values = DynamicCache.from_legacy_cache(past_key_values) | 
					
					
						
						| 
							 | 
						            past_key_values_length = past_key_values.get_usable_length(seq_length) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        if position_ids is None: | 
					
					
						
						| 
							 | 
						            device = input_ids.device if input_ids is not None else inputs_embeds.device | 
					
					
						
						| 
							 | 
						            position_ids = torch.arange( | 
					
					
						
						| 
							 | 
						                past_key_values_length, seq_length + past_key_values_length, dtype=torch.long, device=device | 
					
					
						
						| 
							 | 
						            ) | 
					
					
						
						| 
							 | 
						             | 
					
					
						
						| 
							 | 
						            position_ids = position_ids.view(-1, seq_length) | 
					
					
						
						| 
							 | 
						        else: | 
					
					
						
						| 
							 | 
						            position_ids = position_ids.view(-1, seq_length).long() | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        if inputs_embeds is None: | 
					
					
						
						| 
							 | 
						            inputs_embeds = self.embed_layer(input_ids) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						         | 
					
					
						
						| 
							 | 
						        attention_mask = _prepare_4d_causal_attention_mask( | 
					
					
						
						| 
							 | 
						            attention_mask, | 
					
					
						
						| 
							 | 
						            (batch_size, seq_length), | 
					
					
						
						| 
							 | 
						            inputs_embeds, | 
					
					
						
						| 
							 | 
						            past_key_values_length, | 
					
					
						
						| 
							 | 
						            sliding_window=None, | 
					
					
						
						| 
							 | 
						        ) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        hidden_states = inputs_embeds | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						         | 
					
					
						
						| 
							 | 
						        all_hidden_states = () if output_hidden_states else None | 
					
					
						
						| 
							 | 
						        all_self_attns = () if output_attentions else None | 
					
					
						
						| 
							 | 
						        all_router_logits = () | 
					
					
						
						| 
							 | 
						        next_decoder_cache = None | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        for decoder_layer in self.layers: | 
					
					
						
						| 
							 | 
						            if output_hidden_states: | 
					
					
						
						| 
							 | 
						                all_hidden_states += (hidden_states,) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						            if self.gradient_checkpointing and self.training: | 
					
					
						
						| 
							 | 
						                layer_outputs = self._gradient_checkpointing_func( | 
					
					
						
						| 
							 | 
						                    decoder_layer.__call__, | 
					
					
						
						| 
							 | 
						                    hidden_states, | 
					
					
						
						| 
							 | 
						                    attention_mask, | 
					
					
						
						| 
							 | 
						                    position_ids, | 
					
					
						
						| 
							 | 
						                    past_key_values, | 
					
					
						
						| 
							 | 
						                    output_attentions, | 
					
					
						
						| 
							 | 
						                    use_cache, | 
					
					
						
						| 
							 | 
						                ) | 
					
					
						
						| 
							 | 
						            else: | 
					
					
						
						| 
							 | 
						                layer_outputs = decoder_layer( | 
					
					
						
						| 
							 | 
						                    hidden_states, | 
					
					
						
						| 
							 | 
						                    attention_mask=attention_mask, | 
					
					
						
						| 
							 | 
						                    position_ids=position_ids, | 
					
					
						
						| 
							 | 
						                    past_key_value=past_key_values, | 
					
					
						
						| 
							 | 
						                    output_attentions=output_attentions, | 
					
					
						
						| 
							 | 
						                    use_cache=use_cache, | 
					
					
						
						| 
							 | 
						                ) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						            hidden_states = layer_outputs[0] | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						            all_router_logits += (layer_outputs[-1],) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						            if output_attentions: | 
					
					
						
						| 
							 | 
						                all_self_attns += (layer_outputs[1],) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						            if use_cache: | 
					
					
						
						| 
							 | 
						                next_decoder_cache = layer_outputs[2] | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        hidden_states = self.norm(hidden_states) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						         | 
					
					
						
						| 
							 | 
						        if output_hidden_states: | 
					
					
						
						| 
							 | 
						            all_hidden_states += (hidden_states,) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        next_cache = None | 
					
					
						
						| 
							 | 
						        if use_cache: | 
					
					
						
						| 
							 | 
						            next_cache = next_decoder_cache.to_legacy_cache() if use_legacy_cache else next_decoder_cache | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        if not return_dict: | 
					
					
						
						| 
							 | 
						            return tuple( | 
					
					
						
						| 
							 | 
						                v | 
					
					
						
						| 
							 | 
						                for v in [hidden_states, next_cache, all_hidden_states, all_self_attns, all_router_logits] | 
					
					
						
						| 
							 | 
						                if v is not None | 
					
					
						
						| 
							 | 
						            ) | 
					
					
						
						| 
							 | 
						        return MoeModelOutputWithPast( | 
					
					
						
						| 
							 | 
						            last_hidden_state=hidden_states, | 
					
					
						
						| 
							 | 
						            past_key_values=next_cache, | 
					
					
						
						| 
							 | 
						            hidden_states=all_hidden_states, | 
					
					
						
						| 
							 | 
						            attentions=all_self_attns, | 
					
					
						
						| 
							 | 
						            router_logits=all_router_logits | 
					
					
						
						| 
							 | 
						        ) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						class TimeMoeOutputLayer(nn.Module): | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						    def __init__(self, hidden_size: int, horizon_length: int, input_size: int = 1): | 
					
					
						
						| 
							 | 
						        super().__init__() | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        self.out_layer = nn.Linear( | 
					
					
						
						| 
							 | 
						            hidden_size, | 
					
					
						
						| 
							 | 
						            input_size * horizon_length, | 
					
					
						
						| 
							 | 
						            bias=False, | 
					
					
						
						| 
							 | 
						        ) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						    def forward(self, x): | 
					
					
						
						| 
							 | 
						        """ | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						        Args: | 
					
					
						
						| 
							 | 
						            x (torch.FloatTensor): with shape [B, seq_len, hidden_size] | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						        Returns: | 
					
					
						
						| 
							 | 
						    `       torch.FloatTensor: final prediction with shape [B, seq_len, input_size] | 
					
					
						
						| 
							 | 
						        """ | 
					
					
						
						| 
							 | 
						        return self.out_layer(x) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						class TimeMoeForPrediction(TimeMoePreTrainedModel, TSGenerationMixin): | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						    def __init__(self, config: TimeMoeConfig): | 
					
					
						
						| 
							 | 
						        super().__init__(config) | 
					
					
						
						| 
							 | 
						        self.config = config | 
					
					
						
						| 
							 | 
						        self.apply_aux_loss = config.apply_aux_loss | 
					
					
						
						| 
							 | 
						        self.num_experts_per_tok = config.num_experts_per_tok | 
					
					
						
						| 
							 | 
						        self.router_aux_loss_factor = config.router_aux_loss_factor | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        self.model = TimeMoeModel(config) | 
					
					
						
						| 
							 | 
						         | 
					
					
						
						| 
							 | 
						        lm_head_list = [] | 
					
					
						
						| 
							 | 
						        self.horizon_length_map = {} | 
					
					
						
						| 
							 | 
						        for i, horizon_length in enumerate(config.horizon_lengths): | 
					
					
						
						| 
							 | 
						            lm_head_list.append( | 
					
					
						
						| 
							 | 
						                TimeMoeOutputLayer( | 
					
					
						
						| 
							 | 
						                    hidden_size=self.config.hidden_size, | 
					
					
						
						| 
							 | 
						                    input_size=self.config.input_size, | 
					
					
						
						| 
							 | 
						                    horizon_length=horizon_length, | 
					
					
						
						| 
							 | 
						                ) | 
					
					
						
						| 
							 | 
						            ) | 
					
					
						
						| 
							 | 
						            self.horizon_length_map[horizon_length] = i | 
					
					
						
						| 
							 | 
						        self.lm_heads = nn.ModuleList(lm_head_list) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        self.loss_function = torch.nn.HuberLoss(reduction='none', delta=2.0) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						         | 
					
					
						
						| 
							 | 
						        self.post_init() | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						    def set_decoder(self, decoder): | 
					
					
						
						| 
							 | 
						        self.model = decoder | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						    def get_decoder(self): | 
					
					
						
						| 
							 | 
						        return self.model | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						    def forward( | 
					
					
						
						| 
							 | 
						            self, | 
					
					
						
						| 
							 | 
						            input_ids: torch.FloatTensor = None, | 
					
					
						
						| 
							 | 
						            attention_mask: Optional[torch.Tensor] = None, | 
					
					
						
						| 
							 | 
						            position_ids: Optional[torch.LongTensor] = None, | 
					
					
						
						| 
							 | 
						            past_key_values: Optional[List[torch.FloatTensor]] = None, | 
					
					
						
						| 
							 | 
						            inputs_embeds: Optional[torch.FloatTensor] = None, | 
					
					
						
						| 
							 | 
						            labels: Optional[torch.FloatTensor] = None, | 
					
					
						
						| 
							 | 
						            loss_masks: Optional[torch.FloatTensor] = None, | 
					
					
						
						| 
							 | 
						            use_cache: Optional[bool] = None, | 
					
					
						
						| 
							 | 
						            output_attentions: Optional[bool] = None, | 
					
					
						
						| 
							 | 
						            output_hidden_states: Optional[bool] = None, | 
					
					
						
						| 
							 | 
						            return_dict: Optional[bool] = None, | 
					
					
						
						| 
							 | 
						            max_horizon_length: Optional[int] = None, | 
					
					
						
						| 
							 | 
						    ) -> Union[Tuple, MoeCausalLMOutputWithPast]: | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions | 
					
					
						
						| 
							 | 
						        output_hidden_states = ( | 
					
					
						
						| 
							 | 
						            output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states | 
					
					
						
						| 
							 | 
						        ) | 
					
					
						
						| 
							 | 
						        return_dict = return_dict if return_dict is not None else self.config.use_return_dict | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						         | 
					
					
						
						| 
							 | 
						        outputs = self.model( | 
					
					
						
						| 
							 | 
						            input_ids=input_ids, | 
					
					
						
						| 
							 | 
						            attention_mask=attention_mask, | 
					
					
						
						| 
							 | 
						            position_ids=position_ids, | 
					
					
						
						| 
							 | 
						            past_key_values=past_key_values, | 
					
					
						
						| 
							 | 
						            inputs_embeds=inputs_embeds, | 
					
					
						
						| 
							 | 
						            use_cache=use_cache, | 
					
					
						
						| 
							 | 
						            output_attentions=output_attentions, | 
					
					
						
						| 
							 | 
						            output_hidden_states=output_hidden_states, | 
					
					
						
						| 
							 | 
						            return_dict=return_dict, | 
					
					
						
						| 
							 | 
						        ) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        hidden_states = outputs[0] | 
					
					
						
						| 
							 | 
						        predictions = None | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        loss = None | 
					
					
						
						| 
							 | 
						        aux_loss = None | 
					
					
						
						| 
							 | 
						        if labels is not None: | 
					
					
						
						| 
							 | 
						             | 
					
					
						
						| 
							 | 
						            ar_loss = 0.0 | 
					
					
						
						| 
							 | 
						            for lm_head, horizon_length in zip(self.lm_heads, self.config.horizon_lengths): | 
					
					
						
						| 
							 | 
						                one_predictions = lm_head(hidden_states) | 
					
					
						
						| 
							 | 
						                one_loss = self.calc_ar_loss(one_predictions, labels, loss_masks, horizon_length) | 
					
					
						
						| 
							 | 
						                ar_loss += one_loss | 
					
					
						
						| 
							 | 
						                if predictions is None: | 
					
					
						
						| 
							 | 
						                    predictions = one_predictions | 
					
					
						
						| 
							 | 
						            loss = ar_loss / len(self.config.horizon_lengths) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						            if self.apply_aux_loss: | 
					
					
						
						| 
							 | 
						                router_logits = outputs.router_logits if return_dict else outputs[-1] | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						                temporal_aux_loss = load_balancing_loss_func( | 
					
					
						
						| 
							 | 
						                    router_logits, | 
					
					
						
						| 
							 | 
						                    top_k=self.num_experts_per_tok, | 
					
					
						
						| 
							 | 
						                    num_experts=self.config.num_experts, | 
					
					
						
						| 
							 | 
						                    attention_mask=attention_mask | 
					
					
						
						| 
							 | 
						                ) | 
					
					
						
						| 
							 | 
						                loss += self.router_aux_loss_factor * temporal_aux_loss.to(loss.device) | 
					
					
						
						| 
							 | 
						        else: | 
					
					
						
						| 
							 | 
						            if max_horizon_length is None: | 
					
					
						
						| 
							 | 
						                horizon_length = self.config.horizon_lengths[0] | 
					
					
						
						| 
							 | 
						                max_horizon_length = horizon_length | 
					
					
						
						| 
							 | 
						            else: | 
					
					
						
						| 
							 | 
						                horizon_length = self.config.horizon_lengths[0] | 
					
					
						
						| 
							 | 
						                for h in self.config.horizon_lengths[1:]: | 
					
					
						
						| 
							 | 
						                    if h > max_horizon_length: | 
					
					
						
						| 
							 | 
						                        break | 
					
					
						
						| 
							 | 
						                    else: | 
					
					
						
						| 
							 | 
						                        horizon_length = h | 
					
					
						
						| 
							 | 
						            lm_head = self.lm_heads[self.horizon_length_map[horizon_length]] | 
					
					
						
						| 
							 | 
						            predictions = lm_head(hidden_states) | 
					
					
						
						| 
							 | 
						            if horizon_length > max_horizon_length: | 
					
					
						
						| 
							 | 
						                predictions = predictions[:, :, : self.config.input_size * max_horizon_length] | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        if not return_dict: | 
					
					
						
						| 
							 | 
						            output = (predictions,) + outputs[1:] | 
					
					
						
						| 
							 | 
						            return (loss, aux_loss) + output if loss is not None else output | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        return MoeCausalLMOutputWithPast( | 
					
					
						
						| 
							 | 
						            loss=loss, | 
					
					
						
						| 
							 | 
						            aux_loss=aux_loss, | 
					
					
						
						| 
							 | 
						            logits=predictions, | 
					
					
						
						| 
							 | 
						            past_key_values=outputs.past_key_values, | 
					
					
						
						| 
							 | 
						            hidden_states=outputs.hidden_states, | 
					
					
						
						| 
							 | 
						            attentions=outputs.attentions, | 
					
					
						
						| 
							 | 
						        ) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						    def calc_ar_loss(self, predictions, labels, loss_masks, horizon_length): | 
					
					
						
						| 
							 | 
						        if len(labels.shape) == 2: | 
					
					
						
						| 
							 | 
						            labels.unsqueeze_(dim=-1) | 
					
					
						
						| 
							 | 
						             | 
					
					
						
						| 
							 | 
						            labels = labels.to(predictions.device) | 
					
					
						
						| 
							 | 
						        if loss_masks is not None and len(loss_masks.shape) == 2: | 
					
					
						
						| 
							 | 
						            loss_masks.unsqueeze_(dim=-1) | 
					
					
						
						| 
							 | 
						             | 
					
					
						
						| 
							 | 
						            loss_masks = loss_masks.to(predictions.device) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        if horizon_length > 1: | 
					
					
						
						| 
							 | 
						            batch_size, seq_len, output_size = predictions.shape | 
					
					
						
						| 
							 | 
						            shift_predictions = predictions.view(batch_size, seq_len, horizon_length, -1) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						             | 
					
					
						
						| 
							 | 
						             | 
					
					
						
						| 
							 | 
						            labels = F.pad(labels.transpose(-1, -2), (0, horizon_length - 1), mode='constant', value=0) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						             | 
					
					
						
						| 
							 | 
						            shift_labels = labels.unfold(dimension=-1, size=horizon_length, step=1) | 
					
					
						
						| 
							 | 
						            shift_labels = shift_labels.permute(0, 2, 3, 1) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						            if loss_masks is not None: | 
					
					
						
						| 
							 | 
						                 | 
					
					
						
						| 
							 | 
						                loss_masks = F.pad(loss_masks.transpose(-1, -2), (0, horizon_length - 1), mode='constant', value=0) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						                loss_masks = loss_masks.unfold(dimension=-1, size=horizon_length, step=1) | 
					
					
						
						| 
							 | 
						                loss_masks = loss_masks.permute(0, 2, 3, 1) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        else: | 
					
					
						
						| 
							 | 
						            shift_predictions = predictions | 
					
					
						
						| 
							 | 
						            shift_labels = labels | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						         | 
					
					
						
						| 
							 | 
						        losses = self.loss_function(shift_predictions, shift_labels) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        if loss_masks is not None: | 
					
					
						
						| 
							 | 
						            losses = losses * loss_masks | 
					
					
						
						| 
							 | 
						            loss = losses.sum() / loss_masks.sum() | 
					
					
						
						| 
							 | 
						        else: | 
					
					
						
						| 
							 | 
						            loss = torch.mean(losses) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        return loss | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						    def prepare_inputs_for_generation( | 
					
					
						
						| 
							 | 
						            self, input_ids, past_key_values=None, attention_mask=None, inputs_embeds=None, **kwargs | 
					
					
						
						| 
							 | 
						    ): | 
					
					
						
						| 
							 | 
						         | 
					
					
						
						| 
							 | 
						        if past_key_values is not None: | 
					
					
						
						| 
							 | 
						            if isinstance(past_key_values, Cache): | 
					
					
						
						| 
							 | 
						                cache_length = past_key_values.get_seq_length() | 
					
					
						
						| 
							 | 
						                if isinstance(past_key_values, DynamicCache): | 
					
					
						
						| 
							 | 
						                    past_length = past_key_values.seen_tokens | 
					
					
						
						| 
							 | 
						                else: | 
					
					
						
						| 
							 | 
						                    past_length = cache_length | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						                max_cache_length = past_key_values.get_max_length() | 
					
					
						
						| 
							 | 
						            else: | 
					
					
						
						| 
							 | 
						                cache_length = past_length = past_key_values[0][0].shape[2] | 
					
					
						
						| 
							 | 
						                max_cache_length = None | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						             | 
					
					
						
						| 
							 | 
						             | 
					
					
						
						| 
							 | 
						             | 
					
					
						
						| 
							 | 
						             | 
					
					
						
						| 
							 | 
						            if attention_mask is not None and attention_mask.shape[1] > input_ids.shape[1]: | 
					
					
						
						| 
							 | 
						                input_ids = input_ids[:, -(attention_mask.shape[1] - past_length):] | 
					
					
						
						| 
							 | 
						             | 
					
					
						
						| 
							 | 
						             | 
					
					
						
						| 
							 | 
						            elif past_length < input_ids.shape[1]: | 
					
					
						
						| 
							 | 
						                input_ids = input_ids[:, past_length:] | 
					
					
						
						| 
							 | 
						             | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						             | 
					
					
						
						| 
							 | 
						            if ( | 
					
					
						
						| 
							 | 
						                    max_cache_length is not None | 
					
					
						
						| 
							 | 
						                    and attention_mask is not None | 
					
					
						
						| 
							 | 
						                    and cache_length + input_ids.shape[1] > max_cache_length | 
					
					
						
						| 
							 | 
						            ): | 
					
					
						
						| 
							 | 
						                attention_mask = attention_mask[:, -max_cache_length:] | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        position_ids = kwargs.get("position_ids", None) | 
					
					
						
						| 
							 | 
						        if attention_mask is not None and position_ids is None: | 
					
					
						
						| 
							 | 
						             | 
					
					
						
						| 
							 | 
						            position_ids = attention_mask.long().cumsum(-1) - 1 | 
					
					
						
						| 
							 | 
						            position_ids.masked_fill_(attention_mask == 0, 1) | 
					
					
						
						| 
							 | 
						            if past_key_values: | 
					
					
						
						| 
							 | 
						                position_ids = position_ids[:, -input_ids.shape[1]:] | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						         | 
					
					
						
						| 
							 | 
						        if inputs_embeds is not None and past_key_values is None: | 
					
					
						
						| 
							 | 
						            logger.info('Use input_embedding') | 
					
					
						
						| 
							 | 
						            model_inputs = {"inputs_embeds": inputs_embeds} | 
					
					
						
						| 
							 | 
						        else: | 
					
					
						
						| 
							 | 
						            model_inputs = {"input_ids": input_ids} | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        model_inputs.update( | 
					
					
						
						| 
							 | 
						            { | 
					
					
						
						| 
							 | 
						                "position_ids": position_ids, | 
					
					
						
						| 
							 | 
						                "past_key_values": past_key_values, | 
					
					
						
						| 
							 | 
						                "use_cache": kwargs.get("use_cache"), | 
					
					
						
						| 
							 | 
						                "attention_mask": attention_mask, | 
					
					
						
						| 
							 | 
						            } | 
					
					
						
						| 
							 | 
						        ) | 
					
					
						
						| 
							 | 
						        return model_inputs | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						    @staticmethod | 
					
					
						
						| 
							 | 
						    def _reorder_cache(past_key_values, beam_idx): | 
					
					
						
						| 
							 | 
						        reordered_past = () | 
					
					
						
						| 
							 | 
						        for layer_past in past_key_values: | 
					
					
						
						| 
							 | 
						            reordered_past += ( | 
					
					
						
						| 
							 | 
						                tuple(past_state.index_select(0, beam_idx.to(past_state.device)) for past_state in layer_past), | 
					
					
						
						| 
							 | 
						            ) | 
					
					
						
						| 
							 | 
						        return reordered_past | 
					
					
						
						| 
							 | 
						
 |