jxjessieli commited on
Commit
e4c3491
·
verified ·
1 Parent(s): ee5c355

Create README.md

Browse files
Files changed (1) hide show
  1. README.md +181 -0
README.md ADDED
@@ -0,0 +1,181 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: transformers
3
+ license: apache-2.0
4
+ language:
5
+ - en
6
+ base_model:
7
+ - Qwen/Qwen2.5-VL-7B-Instruct
8
+ pipeline_tag: visual-question-answering
9
+ tags:
10
+ - multi-modal
11
+ - large-language-model
12
+ - video-language-model
13
+ ---
14
+
15
+ <p align="center">
16
+ <img src="https://github.com/LengSicong/MMR1/blob/main/assets/logo.png?raw=true" width="150" style="margin-bottom: 0.2;"/>
17
+ <p>
18
+
19
+ <h3 align="center">
20
+ MMR1: Advancing the Frontiers of Multimodal Reasoning</a></h3>
21
+ <h5 align="center"> If you like our project, please give us a star ⭐ on <a href="https://github.com/LengSicong/MMR1">Github</a> to support us. 🙏🙏 </h2>
22
+
23
+ ## 📰 News
24
+ * **[2025.03.11]** 🔥🔥 Release MMR1-Math-v0, achieving SOTA with only 6k data!
25
+
26
+
27
+ ## Model Description
28
+ MMR1-Math-v0-7B is a Large Multimodal Model specialized in mathematical tasks. Remarkably, MMR1-Math-v0-7B achieves state-of-the-art performance among open-source 7B multimodal models, competing effectively even against proprietary models with significantly larger parameter sizes—all trained using only 6k carefully curated data instances.
29
+
30
+ ### Key Highlights:
31
+
32
+ - **SOTA Performance**: Sets a new **state-of-the-art** benchmark on math-related multimodal tasks among open-source 7B models.
33
+
34
+ - **Minimal Training Data**: Remarkably achieves top-tier performance with just **6k** high-quality samples from **public training datasets**.
35
+
36
+ - **Efficient Training with GRPO**: 6 hours of RL training with 64 H100s for 15 epochs.
37
+
38
+ - **Public and High-Quality Data**: Publicly sourced datasets, rigorously filtered and balanced across both difficulty and mathematical problem types.
39
+
40
+ - **Balanced Data Strategy**: Uniform sampling of data based on both task difficulty (filtering out overly simple problems) and mathematical reasoning diversity.
41
+
42
+
43
+ ## Evaluation Results
44
+
45
+ We evaluated our model using [VLMEvalKit](https://github.com/open-compass/VLMEvalKit/tree/main) on four mathematical reasoning benchmarks: MathVista_MINI, MathVision, LogicVista, and MathVerse_MINI.
46
+
47
+ We also include results on the MathVerse_MINI_Vision_Only_cot (MathVerse_V) subset to maintain consistency with the VLMEvalKit leaderboard. The table below compares our model's performance against various open-source and proprietary models.
48
+
49
+ | Model | size | MathVista | MathVision | LogicVista | MathVerse | MathVerse_V |
50
+ |-------|:----:|:--------------:|:----------:|:----------:|:--------------:|:-------------------:|
51
+ | **Close-sourced** | | | | | | |
52
+ | [GPT-4o 1120](https://openai.com/index/gpt-4o-system-card/) | - | 60.0 | 31.2 | 52.8 | 40.6 | - |
53
+ | [Gemini-2.0-flash](https://deepmind.google/technologies/gemini/flash/) | - | 70.4 | 43.6 | 52.3 | 47.8 | - |
54
+ | [Claude3.7-Sonnet](https://www.anthropic.com/news/claude-3-7-sonnet) | - | 66.8 | 41.9 | 58.2 | 46.7 | - |
55
+ | **R1-related** | | | | | | |
56
+ | [LLaVA-CoT](https://github.com/PKU-YuanGroup/LLaVA-CoT) | 11B | 52.5 | 19.9 | 39.6 | 22.6 | - |
57
+ | [Open-R1-Multimodal](https://github.com/EvolvingLMMs-Lab/open-r1-multimodal) | 7B | 60.6 | - | - | - | - |
58
+ | [Mulberry](https://github.com/HJYao00/Mulberry) | 7B | 63.1 | - | - | - | - |
59
+ | [LMM-R1](https://arxiv.org/abs/2503.07536) | 3B | 63.2 | 26.4 | - | - | 41.6 |
60
+ | [R1-Onevision](https://github.com/Fancy-MLLM/R1-Onevision?tab=readme-ov-file) | 7B | - | 26.2 | - | - | 44.1 |
61
+ | [MM-Eureka](https://github.com/ModalMinds/MM-EUREKA) | 8B | 67.1 | 22.2 | - | - | 40.4 |
62
+ | [MM-Eureka](https://github.com/ModalMinds/MM-EUREKA) | 38B | 64.2 | 26.6 | - | - | 48.9 |
63
+ | **Open-sourced** | | | | | | |
64
+ | [Ovis2-8b](https://github.com/AIDC-AI/Ovis) | 8B | 71.8 | 25.9 | 39.4 | 42.3 | - |
65
+ | [MiniCPM-o-2.6](https://github.com/OpenBMB/MiniCPM-o) | 8B | **71.9** | 21.7 | 36.0 | 35.0 | - |
66
+ | [Qwen2.5-VL](https://github.com/QwenLM/Qwen2.5-VL) (official) | 7B | 68.2 | 25.4 | 47.9 | 41.1 | - |
67
+ | [Qwen2.5-VL](https://github.com/QwenLM/Qwen2.5-VL) (reproduced) | 7B | 67.5 | 25.6 | 46.8 | 42.5 | 46.9 |
68
+ | **Ours** | | | | | | |
69
+ | **MMR1-math-v0** | 7B | 71.0 | **30.2** | **50.8** | **45.1** | **49.8** |
70
+
71
+
72
+
73
+ ### Quick Start
74
+ ```python
75
+ from transformers import Qwen2_5_VLForConditionalGeneration, AutoTokenizer, AutoProcessor
76
+ from qwen_vl_utils import process_vision_info
77
+ # default: Load the model on the available device(s)
78
+ model = Qwen2_5_VLForConditionalGeneration.from_pretrained(
79
+ "MMR1/MMR1-Math-v0-7B",
80
+ torch_dtype=torch.bfloat16,
81
+ attn_implementation="flash_attention_2",
82
+ device_map="auto",
83
+ )
84
+ # default processer
85
+ processor = AutoProcessor.from_pretrained("MMR1/MMR1-Math-v0-7B")
86
+ # Example input
87
+ messages = [
88
+ {
89
+ "role": "user",
90
+ "content": [
91
+ {
92
+ "type": "image",
93
+ "image": "path/to/image.jpeg",
94
+ },
95
+ {"type": "text", "text": "Describe this image."},
96
+ ],
97
+ }
98
+ ]
99
+ # Preparation for inference
100
+ text = processor.apply_chat_template(
101
+ messages, tokenize=False, add_generation_prompt=True
102
+ )
103
+ image_inputs, video_inputs = process_vision_info(messages)
104
+ inputs = processor(
105
+ text=[text],
106
+ images=image_inputs,
107
+ videos=video_inputs,
108
+ padding=True,
109
+ return_tensors="pt",
110
+ )
111
+ inputs = inputs.to("cuda")
112
+ # Inference: Generation of the output
113
+ generated_ids = model.generate(**inputs, max_new_tokens=128)
114
+ generated_ids_trimmed = [
115
+ out_ids[len(in_ids) :] for in_ids, out_ids in zip(inputs.input_ids, generated_ids)
116
+ ]
117
+ output_text = processor.batch_decode(
118
+ generated_ids_trimmed, skip_special_tokens=True, clean_up_tokenization_spaces=False
119
+ )
120
+ print(output_text)
121
+ ```
122
+ <details>
123
+ <summary>Batch inference</summary>
124
+
125
+ ```python
126
+ # Sample messages for batch inference
127
+ messages1 = [
128
+ {
129
+ "role": "user",
130
+ "content": [
131
+ {"type": "image", "image": "file:///path/to/image1.jpg"},
132
+ {"type": "image", "image": "file:///path/to/image2.jpg"},
133
+ {"type": "text", "text": "What are the common elements in these pictures?"},
134
+ ],
135
+ }
136
+ ]
137
+ messages2 = [
138
+ {"role": "system", "content": "You are a helpful assistant."},
139
+ {"role": "user", "content": "Who are you?"},
140
+ ]
141
+ # Combine messages for batch processing
142
+ messages = [messages1, messages2]
143
+ # Preparation for batch inference
144
+ texts = [
145
+ processor.apply_chat_template(msg, tokenize=False, add_generation_prompt=True)
146
+ for msg in messages
147
+ ]
148
+ image_inputs, video_inputs = process_vision_info(messages)
149
+ inputs = processor(
150
+ text=texts,
151
+ images=image_inputs,
152
+ videos=video_inputs,
153
+ padding=True,
154
+ return_tensors="pt",
155
+ )
156
+ inputs = inputs.to("cuda")
157
+ # Batch Inference
158
+ generated_ids = model.generate(**inputs, max_new_tokens=128)
159
+ generated_ids_trimmed = [
160
+ out_ids[len(in_ids) :] for in_ids, out_ids in zip(inputs.input_ids, generated_ids)
161
+ ]
162
+ output_texts = processor.batch_decode(
163
+ generated_ids_trimmed, skip_special_tokens=True, clean_up_tokenization_spaces=False
164
+ )
165
+ print(output_texts)
166
+ ```
167
+ </details>
168
+
169
+
170
+ ## Citation
171
+
172
+ If you find MMR1 useful for your research and applications, please cite using this BibTeX:
173
+
174
+ ```bibtex
175
+ @misc{MMR1-Math2025,
176
+ title={MMR1: Advancing the Frontiers of Multimodal Reasoning},
177
+ author={Sicong Leng*, Jing Wang*, Jiaxi Li*, Hao Zhang*, Zhiqiang Hu, Boqiang Zhang, Hang Zhang, Yuming Jiang, Xin Li, Fan Wang, Yu Rong, Aixin Sun†, Shijian Lu†},
178
+ year={2025},
179
+ howpublished={\url{https://github.com/LengSicong/MMR1}},
180
+ }
181
+ ```