Create README.md
Browse files
README.md
ADDED
@@ -0,0 +1,181 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: transformers
|
3 |
+
license: apache-2.0
|
4 |
+
language:
|
5 |
+
- en
|
6 |
+
base_model:
|
7 |
+
- Qwen/Qwen2.5-VL-7B-Instruct
|
8 |
+
pipeline_tag: visual-question-answering
|
9 |
+
tags:
|
10 |
+
- multi-modal
|
11 |
+
- large-language-model
|
12 |
+
- video-language-model
|
13 |
+
---
|
14 |
+
|
15 |
+
<p align="center">
|
16 |
+
<img src="https://github.com/LengSicong/MMR1/blob/main/assets/logo.png?raw=true" width="150" style="margin-bottom: 0.2;"/>
|
17 |
+
<p>
|
18 |
+
|
19 |
+
<h3 align="center">
|
20 |
+
MMR1: Advancing the Frontiers of Multimodal Reasoning</a></h3>
|
21 |
+
<h5 align="center"> If you like our project, please give us a star ⭐ on <a href="https://github.com/LengSicong/MMR1">Github</a> to support us. 🙏🙏 </h2>
|
22 |
+
|
23 |
+
## 📰 News
|
24 |
+
* **[2025.03.11]** 🔥🔥 Release MMR1-Math-v0, achieving SOTA with only 6k data!
|
25 |
+
|
26 |
+
|
27 |
+
## Model Description
|
28 |
+
MMR1-Math-v0-7B is a Large Multimodal Model specialized in mathematical tasks. Remarkably, MMR1-Math-v0-7B achieves state-of-the-art performance among open-source 7B multimodal models, competing effectively even against proprietary models with significantly larger parameter sizes—all trained using only 6k carefully curated data instances.
|
29 |
+
|
30 |
+
### Key Highlights:
|
31 |
+
|
32 |
+
- **SOTA Performance**: Sets a new **state-of-the-art** benchmark on math-related multimodal tasks among open-source 7B models.
|
33 |
+
|
34 |
+
- **Minimal Training Data**: Remarkably achieves top-tier performance with just **6k** high-quality samples from **public training datasets**.
|
35 |
+
|
36 |
+
- **Efficient Training with GRPO**: 6 hours of RL training with 64 H100s for 15 epochs.
|
37 |
+
|
38 |
+
- **Public and High-Quality Data**: Publicly sourced datasets, rigorously filtered and balanced across both difficulty and mathematical problem types.
|
39 |
+
|
40 |
+
- **Balanced Data Strategy**: Uniform sampling of data based on both task difficulty (filtering out overly simple problems) and mathematical reasoning diversity.
|
41 |
+
|
42 |
+
|
43 |
+
## Evaluation Results
|
44 |
+
|
45 |
+
We evaluated our model using [VLMEvalKit](https://github.com/open-compass/VLMEvalKit/tree/main) on four mathematical reasoning benchmarks: MathVista_MINI, MathVision, LogicVista, and MathVerse_MINI.
|
46 |
+
|
47 |
+
We also include results on the MathVerse_MINI_Vision_Only_cot (MathVerse_V) subset to maintain consistency with the VLMEvalKit leaderboard. The table below compares our model's performance against various open-source and proprietary models.
|
48 |
+
|
49 |
+
| Model | size | MathVista | MathVision | LogicVista | MathVerse | MathVerse_V |
|
50 |
+
|-------|:----:|:--------------:|:----------:|:----------:|:--------------:|:-------------------:|
|
51 |
+
| **Close-sourced** | | | | | | |
|
52 |
+
| [GPT-4o 1120](https://openai.com/index/gpt-4o-system-card/) | - | 60.0 | 31.2 | 52.8 | 40.6 | - |
|
53 |
+
| [Gemini-2.0-flash](https://deepmind.google/technologies/gemini/flash/) | - | 70.4 | 43.6 | 52.3 | 47.8 | - |
|
54 |
+
| [Claude3.7-Sonnet](https://www.anthropic.com/news/claude-3-7-sonnet) | - | 66.8 | 41.9 | 58.2 | 46.7 | - |
|
55 |
+
| **R1-related** | | | | | | |
|
56 |
+
| [LLaVA-CoT](https://github.com/PKU-YuanGroup/LLaVA-CoT) | 11B | 52.5 | 19.9 | 39.6 | 22.6 | - |
|
57 |
+
| [Open-R1-Multimodal](https://github.com/EvolvingLMMs-Lab/open-r1-multimodal) | 7B | 60.6 | - | - | - | - |
|
58 |
+
| [Mulberry](https://github.com/HJYao00/Mulberry) | 7B | 63.1 | - | - | - | - |
|
59 |
+
| [LMM-R1](https://arxiv.org/abs/2503.07536) | 3B | 63.2 | 26.4 | - | - | 41.6 |
|
60 |
+
| [R1-Onevision](https://github.com/Fancy-MLLM/R1-Onevision?tab=readme-ov-file) | 7B | - | 26.2 | - | - | 44.1 |
|
61 |
+
| [MM-Eureka](https://github.com/ModalMinds/MM-EUREKA) | 8B | 67.1 | 22.2 | - | - | 40.4 |
|
62 |
+
| [MM-Eureka](https://github.com/ModalMinds/MM-EUREKA) | 38B | 64.2 | 26.6 | - | - | 48.9 |
|
63 |
+
| **Open-sourced** | | | | | | |
|
64 |
+
| [Ovis2-8b](https://github.com/AIDC-AI/Ovis) | 8B | 71.8 | 25.9 | 39.4 | 42.3 | - |
|
65 |
+
| [MiniCPM-o-2.6](https://github.com/OpenBMB/MiniCPM-o) | 8B | **71.9** | 21.7 | 36.0 | 35.0 | - |
|
66 |
+
| [Qwen2.5-VL](https://github.com/QwenLM/Qwen2.5-VL) (official) | 7B | 68.2 | 25.4 | 47.9 | 41.1 | - |
|
67 |
+
| [Qwen2.5-VL](https://github.com/QwenLM/Qwen2.5-VL) (reproduced) | 7B | 67.5 | 25.6 | 46.8 | 42.5 | 46.9 |
|
68 |
+
| **Ours** | | | | | | |
|
69 |
+
| **MMR1-math-v0** | 7B | 71.0 | **30.2** | **50.8** | **45.1** | **49.8** |
|
70 |
+
|
71 |
+
|
72 |
+
|
73 |
+
### Quick Start
|
74 |
+
```python
|
75 |
+
from transformers import Qwen2_5_VLForConditionalGeneration, AutoTokenizer, AutoProcessor
|
76 |
+
from qwen_vl_utils import process_vision_info
|
77 |
+
# default: Load the model on the available device(s)
|
78 |
+
model = Qwen2_5_VLForConditionalGeneration.from_pretrained(
|
79 |
+
"MMR1/MMR1-Math-v0-7B",
|
80 |
+
torch_dtype=torch.bfloat16,
|
81 |
+
attn_implementation="flash_attention_2",
|
82 |
+
device_map="auto",
|
83 |
+
)
|
84 |
+
# default processer
|
85 |
+
processor = AutoProcessor.from_pretrained("MMR1/MMR1-Math-v0-7B")
|
86 |
+
# Example input
|
87 |
+
messages = [
|
88 |
+
{
|
89 |
+
"role": "user",
|
90 |
+
"content": [
|
91 |
+
{
|
92 |
+
"type": "image",
|
93 |
+
"image": "path/to/image.jpeg",
|
94 |
+
},
|
95 |
+
{"type": "text", "text": "Describe this image."},
|
96 |
+
],
|
97 |
+
}
|
98 |
+
]
|
99 |
+
# Preparation for inference
|
100 |
+
text = processor.apply_chat_template(
|
101 |
+
messages, tokenize=False, add_generation_prompt=True
|
102 |
+
)
|
103 |
+
image_inputs, video_inputs = process_vision_info(messages)
|
104 |
+
inputs = processor(
|
105 |
+
text=[text],
|
106 |
+
images=image_inputs,
|
107 |
+
videos=video_inputs,
|
108 |
+
padding=True,
|
109 |
+
return_tensors="pt",
|
110 |
+
)
|
111 |
+
inputs = inputs.to("cuda")
|
112 |
+
# Inference: Generation of the output
|
113 |
+
generated_ids = model.generate(**inputs, max_new_tokens=128)
|
114 |
+
generated_ids_trimmed = [
|
115 |
+
out_ids[len(in_ids) :] for in_ids, out_ids in zip(inputs.input_ids, generated_ids)
|
116 |
+
]
|
117 |
+
output_text = processor.batch_decode(
|
118 |
+
generated_ids_trimmed, skip_special_tokens=True, clean_up_tokenization_spaces=False
|
119 |
+
)
|
120 |
+
print(output_text)
|
121 |
+
```
|
122 |
+
<details>
|
123 |
+
<summary>Batch inference</summary>
|
124 |
+
|
125 |
+
```python
|
126 |
+
# Sample messages for batch inference
|
127 |
+
messages1 = [
|
128 |
+
{
|
129 |
+
"role": "user",
|
130 |
+
"content": [
|
131 |
+
{"type": "image", "image": "file:///path/to/image1.jpg"},
|
132 |
+
{"type": "image", "image": "file:///path/to/image2.jpg"},
|
133 |
+
{"type": "text", "text": "What are the common elements in these pictures?"},
|
134 |
+
],
|
135 |
+
}
|
136 |
+
]
|
137 |
+
messages2 = [
|
138 |
+
{"role": "system", "content": "You are a helpful assistant."},
|
139 |
+
{"role": "user", "content": "Who are you?"},
|
140 |
+
]
|
141 |
+
# Combine messages for batch processing
|
142 |
+
messages = [messages1, messages2]
|
143 |
+
# Preparation for batch inference
|
144 |
+
texts = [
|
145 |
+
processor.apply_chat_template(msg, tokenize=False, add_generation_prompt=True)
|
146 |
+
for msg in messages
|
147 |
+
]
|
148 |
+
image_inputs, video_inputs = process_vision_info(messages)
|
149 |
+
inputs = processor(
|
150 |
+
text=texts,
|
151 |
+
images=image_inputs,
|
152 |
+
videos=video_inputs,
|
153 |
+
padding=True,
|
154 |
+
return_tensors="pt",
|
155 |
+
)
|
156 |
+
inputs = inputs.to("cuda")
|
157 |
+
# Batch Inference
|
158 |
+
generated_ids = model.generate(**inputs, max_new_tokens=128)
|
159 |
+
generated_ids_trimmed = [
|
160 |
+
out_ids[len(in_ids) :] for in_ids, out_ids in zip(inputs.input_ids, generated_ids)
|
161 |
+
]
|
162 |
+
output_texts = processor.batch_decode(
|
163 |
+
generated_ids_trimmed, skip_special_tokens=True, clean_up_tokenization_spaces=False
|
164 |
+
)
|
165 |
+
print(output_texts)
|
166 |
+
```
|
167 |
+
</details>
|
168 |
+
|
169 |
+
|
170 |
+
## Citation
|
171 |
+
|
172 |
+
If you find MMR1 useful for your research and applications, please cite using this BibTeX:
|
173 |
+
|
174 |
+
```bibtex
|
175 |
+
@misc{MMR1-Math2025,
|
176 |
+
title={MMR1: Advancing the Frontiers of Multimodal Reasoning},
|
177 |
+
author={Sicong Leng*, Jing Wang*, Jiaxi Li*, Hao Zhang*, Zhiqiang Hu, Boqiang Zhang, Hang Zhang, Yuming Jiang, Xin Li, Fan Wang, Yu Rong, Aixin Sun†, Shijian Lu†},
|
178 |
+
year={2025},
|
179 |
+
howpublished={\url{https://github.com/LengSicong/MMR1}},
|
180 |
+
}
|
181 |
+
```
|