Update README.md
Browse files
README.md
CHANGED
|
@@ -3,8 +3,8 @@ license: mit
|
|
| 3 |
pipeline_tag: object-detection
|
| 4 |
tags:
|
| 5 |
- License-Plate-Recognizer
|
| 6 |
-
-
|
| 7 |
-
-
|
| 8 |
---
|
| 9 |
**License Plate Detection Model using YOLOv8**
|
| 10 |
=============================================
|
|
@@ -32,14 +32,15 @@ The model was trained using the YOLOv8 architecture with the following hyperpara
|
|
| 32 |
|
| 33 |
**Model Performance**
|
| 34 |
---------------------
|
| 35 |
-
|
| 36 |
The model achieves the following performance metrics on the validation set:
|
|
|
|
| 37 |
|
| 38 |
* mAP (mean Average Precision): 0.92
|
| 39 |
* AP (Average Precision) for license plates: 0.95
|
| 40 |
* Recall: 0.93
|
| 41 |
* Precision: 0.94
|
| 42 |
-
|
| 43 |
**Usage**
|
| 44 |
-----
|
| 45 |
|
|
|
|
| 3 |
pipeline_tag: object-detection
|
| 4 |
tags:
|
| 5 |
- License-Plate-Recognizer
|
| 6 |
+
- Yolov8m
|
| 7 |
+
- Object detection
|
| 8 |
---
|
| 9 |
**License Plate Detection Model using YOLOv8**
|
| 10 |
=============================================
|
|
|
|
| 32 |
|
| 33 |
**Model Performance**
|
| 34 |
---------------------
|
| 35 |
+

|
| 36 |
The model achieves the following performance metrics on the validation set:
|
| 37 |
+

|
| 38 |
|
| 39 |
* mAP (mean Average Precision): 0.92
|
| 40 |
* AP (Average Precision) for license plates: 0.95
|
| 41 |
* Recall: 0.93
|
| 42 |
* Precision: 0.94
|
| 43 |
+

|
| 44 |
**Usage**
|
| 45 |
-----
|
| 46 |
|