File size: 3,852 Bytes
aa5b5e2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
---
license: apache-2.0
base_model: google/flan-t5-base
tags:
- generated_from_trainer
metrics:
- accuracy
model-index:
- name: flan_t5_base_ledgar
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# flan_t5_base_ledgar

This model is a fine-tuned version of [google/flan-t5-base](https://huggingface.co/google/flan-t5-base) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.5092
- Accuracy: 0.8685
- F1 Macro: 0.7955
- F1 Micro: 0.8685

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 0.0005
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- distributed_type: multi-GPU
- num_devices: 2
- total_train_batch_size: 64
- total_eval_batch_size: 64
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3.0

### Training results

| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 Macro | F1 Micro |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:--------:|:--------:|
| 1.2824        | 0.11  | 100  | 1.0243          | 0.7464   | 0.5723   | 0.7464   |
| 0.8961        | 0.21  | 200  | 0.8572          | 0.7743   | 0.6359   | 0.7743   |
| 0.8233        | 0.32  | 300  | 0.7788          | 0.7968   | 0.6756   | 0.7968   |
| 0.7722        | 0.43  | 400  | 0.7432          | 0.8014   | 0.6689   | 0.8014   |
| 0.7739        | 0.53  | 500  | 0.6933          | 0.8135   | 0.7020   | 0.8135   |
| 0.7435        | 0.64  | 600  | 0.6871          | 0.8137   | 0.7028   | 0.8137   |
| 0.6877        | 0.75  | 700  | 0.6751          | 0.8169   | 0.7012   | 0.8169   |
| 0.6968        | 0.85  | 800  | 0.6471          | 0.8225   | 0.7249   | 0.8225   |
| 0.6218        | 0.96  | 900  | 0.6366          | 0.8219   | 0.7264   | 0.8219   |
| 0.5101        | 1.07  | 1000 | 0.6130          | 0.8378   | 0.7388   | 0.8378   |
| 0.5411        | 1.17  | 1100 | 0.6088          | 0.8375   | 0.7392   | 0.8375   |
| 0.5918        | 1.28  | 1200 | 0.5864          | 0.8449   | 0.7577   | 0.8449   |
| 0.4785        | 1.39  | 1300 | 0.5917          | 0.8391   | 0.7460   | 0.8391   |
| 0.4372        | 1.49  | 1400 | 0.5790          | 0.8409   | 0.7563   | 0.8409   |
| 0.5022        | 1.6   | 1500 | 0.5868          | 0.8437   | 0.7524   | 0.8437   |
| 0.5391        | 1.71  | 1600 | 0.5613          | 0.8447   | 0.7520   | 0.8447   |
| 0.4971        | 1.81  | 1700 | 0.5466          | 0.8545   | 0.7702   | 0.8545   |
| 0.4686        | 1.92  | 1800 | 0.5260          | 0.8566   | 0.7774   | 0.8566   |
| 0.349         | 2.03  | 1900 | 0.5416          | 0.8565   | 0.7721   | 0.8565   |
| 0.3216        | 2.13  | 2000 | 0.5441          | 0.8565   | 0.7763   | 0.8565   |
| 0.3531        | 2.24  | 2100 | 0.5444          | 0.8553   | 0.7753   | 0.8553   |
| 0.3276        | 2.35  | 2200 | 0.5380          | 0.8604   | 0.7796   | 0.8604   |
| 0.3372        | 2.45  | 2300 | 0.5231          | 0.8634   | 0.7831   | 0.8634   |
| 0.3227        | 2.56  | 2400 | 0.5210          | 0.8651   | 0.7872   | 0.8651   |
| 0.2987        | 2.67  | 2500 | 0.5188          | 0.8665   | 0.7910   | 0.8665   |
| 0.3354        | 2.77  | 2600 | 0.5150          | 0.8666   | 0.7931   | 0.8666   |
| 0.3103        | 2.88  | 2700 | 0.5103          | 0.8681   | 0.7942   | 0.8681   |
| 0.3248        | 2.99  | 2800 | 0.5092          | 0.8685   | 0.7955   | 0.8685   |


### Framework versions

- Transformers 4.39.0.dev0
- Pytorch 2.2.1+cu121
- Datasets 2.18.0
- Tokenizers 0.15.2