Diffusers
Safetensors
LuckyLiGY commited on
Commit
409714d
·
verified ·
1 Parent(s): 1565ac4

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +146 -11
README.md CHANGED
@@ -1,11 +1,146 @@
1
- ---
2
- license: cc-by-nc-sa-4.0
3
- ---
4
- <div style="display: flex; justify-content: center; align-items: center;">
5
- <a href="https://arxiv.org/abs/2505.21325v2" style="margin: 0 2px;">
6
- <img src='https://img.shields.io/badge/arXiv-2505.21325v2-red?style=flat&logo=arXiv&logoColor=red' alt='arxiv'>
7
- </a>
8
- <a href="https://github.com/Zheng-Chong/CatVTON/LICENCE" style="margin: 0 2px;">
9
- <img src='https://img.shields.io/badge/License-CC BY--NC--SA--4.0-lightgreen?style=flat&logo=Lisence' alt='License'>
10
- </a>
11
- </div>
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # MagicTryOn: Harnessing Diffusion Transformer for Garment-Preserving Video Virtual Try-on
2
+
3
+ <a href="https://arxiv.org/abs/2505.21325v2"><img src='https://img.shields.io/badge/arXiv-2501.11325-red?style=flat&logo=arXiv&logoColor=red' alt='arxiv'></a>&nbsp;
4
+ <a href="https://vivocameraresearch.github.io/magictryon/"><img src='https://img.shields.io/badge/Project-Page-Green' alt='GitHub'></a>&nbsp;
5
+ <a href="http://www.apache.org/licenses/LICENSE-2.0"><img src='https://img.shields.io/badge/License-CC BY--NC--SA--4.0-lightgreen?style=flat&logo=Lisence' alt='License'></a>&nbsp;
6
+
7
+
8
+ **MagicTryOn** is a video virtual try-on framework based on a large-scale video diffusion Transformer. ***1) It adopts Wan2.1 diffusion Transformer as the backbone*** and ***2) employs full self-attention to model spatiotemporal consistency***. ***3) A coarse-to-fine garment preservation strategy is introduced, along with a mask-aware loss to enhance garment region fidelity***.
9
+ <div align="center">
10
+ <img src="asset/model.png" width="100%" height="100%"/>
11
+ </div>
12
+
13
+ ## Updates
14
+ - **`2025/06/06`**: 🎉 We are excited to announce that the ***code and weights*** of [**MagicTryOn**](https://github.com/vivoCameraResearch/Magic-TryOn/) have been released! Check it out! You can download the weights from 🤗[**HuggingFace**](https://huggingface.co/LuckyLiGY/MagicTryOn).
15
+ - **`2025/05/27`**: Our [**Paper on ArXiv**](https://arxiv.org/abs/2505.21325v2) is available 🥳!
16
+
17
+ ## To-Do List for MagicTryOn Release
18
+ - ✅ Release the source code
19
+ - ✅ Release the inference demo and pretrained weights
20
+ - ✅ Release the customized try-on utilities
21
+ - [ ] Release the testing scripts
22
+ - [ ] Release the training scripts
23
+ - [ ] Release the second version of the pretrained model weights
24
+ - [ ] Update Gradio App.
25
+
26
+ ## Installation
27
+
28
+ Create a conda environment & Install requirments
29
+ ```shell
30
+ # python==3.12.9 cuda==12.3 torch==2.2
31
+ conda create -n magictryon python==3.12.9
32
+ conda activate magictryon
33
+ pip install -r requirements.txt
34
+ # or
35
+ conda env create -f environment.yaml
36
+ ```
37
+ If you encounter an error while installing Flash Attention, please [**manually download**](https://github.com/Dao-AILab/flash-attention/releases) the installation package based on your Python version, CUDA version, and Torch version, and install it using ***pip install***.
38
+
39
+
40
+ ## Demo Inference
41
+ ### 1. Image TryOn
42
+ You can directly run the following command to perform image try-on. If you want to modify some inference parameters, please make the changes inside the ***predict_image_tryon_up.py*** file.
43
+ ```PowerShell
44
+ CUDA_VISIBLE_DEVICES=0 python predict_image_tryon_up.py
45
+
46
+ CUDA_VISIBLE_DEVICES=1 python predict_image_tryon_low.py
47
+ ```
48
+
49
+ ### 2. Video TryOn
50
+ You can directly run the following command to perform image try-on. If you want to modify some inference parameters, please make the changes inside the ***predict_video_tryon_up.py*** file.
51
+ ```PowerShell
52
+ CUDA_VISIBLE_DEVICES=0 python predict_video_tryon_up.py
53
+
54
+ CUDA_VISIBLE_DEVICES=1 python predict_video_tryon_low.py
55
+ ```
56
+
57
+ ### 3. Customize TryOn
58
+ Before performing customized try-on, you need to complete the following five steps to obtain:
59
+
60
+ 1. **Cloth Caption**
61
+ Generate a descriptive caption for the garment, which may be used for conditioning or multimodal control. We use [**Qwen/Qwen2.5-VL-7B-Instruct**](https://huggingface.co/Qwen/Qwen2.5-VL-7B-Instruct) to obtain the caption. Before running, you need to specify the folder path.
62
+ ```PowerShell
63
+ python inference/customize/get_garment_caption.py
64
+ ```
65
+
66
+ 2. **Cloth Line Map**
67
+ Extract the structural lines or sketch of the garment using [**AniLines-Anime-Lineart-Extractor**](https://github.com/zhenglinpan/AniLines-Anime-Lineart-Extractor).
68
+
69
+ ```PowerShell
70
+ cd inference/customize/AniLines
71
+ python infer.py --dir_in datasets/garment/vivo/vivo_garment --dir_out datasets/garment/vivo/vivo_garment_anilines --mode detail --binarize -1 --fp16 True --device cuda:1
72
+ ```
73
+
74
+ 3. **Mask**
75
+ Generate the agnostic mask of the garment, which is essential for region control during try-on. Please [**download**]() the required checkpoint for obtaining the agnostic mask. The checkpoint needs to be placed in the ***inference/customize/gen_mask/ckpt*** folder.
76
+
77
+ (1) You need to rename your video to ***video.mp4***, and then construct the folders according to the following directory structure.
78
+ ```
79
+ ├── datasets
80
+ │ ├── person
81
+ | | ├── customize
82
+ │ │ │ ├── video
83
+ │ │ │ │ ├── 00001
84
+ │ │ │ │ │ ├── video.mp4
85
+ | | | | ├── 00002 ...
86
+ │ │ │ ├── image
87
+ │ │ │ │ ├── 00001
88
+ │ │ │ │ │ │ ├── images
89
+ │ │ │ │ │ │ │ ├── 0000.png
90
+ | | | | ├── 00002 ...
91
+ ```
92
+
93
+ (2) Using ***video2image.py*** to convert the video into image frames and save them to ***00001/images***.
94
+
95
+ (3) Run the following command to obtain the agnostic mask.
96
+
97
+ ```PowerShell
98
+ cd inference/customize/gen_mask
99
+ python app_mask.py
100
+ # if extract the mask for lower_body or dresses, please modify line 65.
101
+ # if lower_body:
102
+ # mask, _ = get_mask_location('dc', "lower_body", model_parse, keypoints)
103
+ # if dresses:
104
+ # mask, _ = get_mask_location('dc', "dresses", model_parse, keypoints)
105
+ ```
106
+
107
+ After completing the above steps, you will obtain the agnostic masks for all video frames in the ***00001/masks*** folder.
108
+ 4. **Agnostic Representation**
109
+ Construct an agnostic representation of the person by removing garment-specific features. You can directly run ***get_masked_person.py*** to obtain the Agnostic Representation. Make sure to modify the ***image_folder*** and ***mask_folder*** parameters. The resulting video frames will be stored in ***00001/agnostic***.
110
+
111
+ 5. **DensePose**
112
+ Use DensePose to obtain UV-mapped dense human body coordinates for better spatial alignment.
113
+
114
+ (1) Install [**detectron2**](https://github.com/facebookresearch/detectron2).
115
+
116
+ (2) Run the following command:
117
+ ```PowerShell
118
+ cd inference/customize/detectron2/projects/DensePose
119
+ bash run.sh
120
+ ```
121
+ (3) The generated results will be stored in the ***00001/image-densepose*** folder.
122
+
123
+ After completing the above steps, run the ***image2video.py*** file to generate the required customized videos: ***mask.mp4***, ***agnostic.mp4***, and ***densepose.mp4***. Then, run the following command:
124
+ ```PowerShell
125
+ CUDA_VISIBLE_DEVICES=0 python predict_video_tryon_customize.py
126
+ ```
127
+
128
+ ## Acknowledgement
129
+ Our code is modified based on [VideoX-Fun](https://github.com/aigc-apps/VideoX-Fun/tree/main). We adopt [Wan2.1-I2V-14B](https://github.com/Wan-Video/Wan2.1) as the base model. We use [SCHP](https://github.com/GoGoDuck912/Self-Correction-Human-Parsing/tree/master) and [openpose](https://github.com/CMU-Perceptual-Computing-Lab/openpose) to generate masks. We use [detectron2](https://github.com/facebookresearch/detectron2) to generate densepose. Thanks to all the contributors!
130
+
131
+ ## License
132
+ All the materials, including code, checkpoints, and demo, are made available under the [Creative Commons BY-NC-SA 4.0](https://creativecommons.org/licenses/by-nc-sa/4.0/) license. You are free to copy, redistribute, remix, transform, and build upon the project for non-commercial purposes, as long as you give appropriate credit and distribute your contributions under the same license.
133
+
134
+ ## Citation
135
+
136
+ ```bibtex
137
+ @misc{li2025magictryon,
138
+ title={MagicTryOn: Harnessing Diffusion Transformer for Garment-Preserving Video Virtual Try-on},
139
+ author={Guangyuan Li and Siming Zheng and Hao Zhang and Jinwei Chen and Junsheng Luan and Binkai Ou and Lei Zhao and Bo Li and Peng-Tao Jiang},
140
+ year={2025},
141
+ eprint={2505.21325},
142
+ archivePrefix={arXiv},
143
+ primaryClass={cs.CV},
144
+ url={https://arxiv.org/abs/2505.21325},
145
+ }
146
+ ```