sarang-shrivastava commited on
Commit
a79245f
·
1 Parent(s): 2e8bef0

Update handler.py

Browse files
Files changed (1) hide show
  1. handler.py +16 -4
handler.py CHANGED
@@ -4,7 +4,10 @@ from typing import Dict, List, Any
4
  # import torch
5
  from datetime import datetime
6
 
 
7
 
 
 
8
 
9
 
10
  import requests
@@ -19,6 +22,12 @@ class EndpointHandler():
19
  self.processor = Blip2Processor.from_pretrained(path)
20
  self.model = Blip2ForConditionalGeneration.from_pretrained(path, device_map="auto")
21
 
 
 
 
 
 
 
22
  # device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
23
  # self.model.eval()
24
  # self.model.to(device=device, dtype=self.torch_dtype)
@@ -71,11 +80,14 @@ class EndpointHandler():
71
 
72
  raw_image = Image.open(requests.get(img_url, stream=True).raw).convert('RGB')
73
 
74
- question = "how many dogs are in the picture?"
75
- inputs = self.processor(raw_image, question, return_tensors="pt").to("cuda")
 
 
76
 
77
  out = self.model.generate(**inputs)
78
- output_text = self.processor.decode(out[0], skip_special_tokens=True)
 
79
 
80
  current = datetime.now()
81
 
@@ -100,4 +112,4 @@ class EndpointHandler():
100
  # new_tokens = output_ids[0, len(input_ids[0]) :]
101
  # output_text = self.tokenizer.decode(new_tokens, skip_special_tokens=True)
102
 
103
- return [{"gen_text":output_text, "time_elapsed": str(current-now)}]
 
4
  # import torch
5
  from datetime import datetime
6
 
7
+ import torch
8
 
9
+ import logging
10
+ logging.basicConfig(format='%(levelname)s:%(message)s', level=logging.DEBUG)
11
 
12
 
13
  import requests
 
22
  self.processor = Blip2Processor.from_pretrained(path)
23
  self.model = Blip2ForConditionalGeneration.from_pretrained(path, device_map="auto")
24
 
25
+ self.device = "cuda" if torch.cuda.is_available() else "cpu"
26
+
27
+ self.model.to(self.device)
28
+
29
+ logging.info('Model moved to device-' + self.device)
30
+
31
  # device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
32
  # self.model.eval()
33
  # self.model.to(device=device, dtype=self.torch_dtype)
 
80
 
81
  raw_image = Image.open(requests.get(img_url, stream=True).raw).convert('RGB')
82
 
83
+ # question = "how many dogs are in the picture?"
84
+ # inputs = self.processor(raw_image, question, return_tensors="pt").to("cuda")
85
+
86
+ inputs = self.processor(raw_image, return_tensors="pt").to("cuda")
87
 
88
  out = self.model.generate(**inputs)
89
+
90
+ generated_text = self.processor.batch_decode(out, skip_special_tokens=True)[0].strip()
91
 
92
  current = datetime.now()
93
 
 
112
  # new_tokens = output_ids[0, len(input_ids[0]) :]
113
  # output_text = self.tokenizer.decode(new_tokens, skip_special_tokens=True)
114
 
115
+ return [{"gen_text":generated_text, "time_elapsed": str(current-now)}]