Commit
·
bef3705
1
Parent(s):
a062bdf
update model card README.md
Browse files
README.md
CHANGED
|
@@ -1,6 +1,4 @@
|
|
| 1 |
---
|
| 2 |
-
license: apache-2.0
|
| 3 |
-
base_model: google/flan-t5-base
|
| 4 |
tags:
|
| 5 |
- generated_from_trainer
|
| 6 |
datasets:
|
|
@@ -15,9 +13,9 @@ should probably proofread and complete it, then remove this comment. -->
|
|
| 15 |
|
| 16 |
# flan-t5-base-xlsum
|
| 17 |
|
| 18 |
-
This model
|
| 19 |
It achieves the following results on the evaluation set:
|
| 20 |
-
- Loss: 0.
|
| 21 |
|
| 22 |
## Model description
|
| 23 |
|
|
@@ -49,114 +47,114 @@ The following hyperparameters were used during training:
|
|
| 49 |
|
| 50 |
| Training Loss | Epoch | Step | Validation Loss |
|
| 51 |
|:-------------:|:-----:|:-----:|:---------------:|
|
| 52 |
-
|
|
| 53 |
-
|
|
| 54 |
-
| 0.
|
| 55 |
-
| 0.
|
| 56 |
-
| 0.
|
| 57 |
-
| 0.
|
| 58 |
-
| 0.
|
| 59 |
-
| 0.
|
| 60 |
-
| 0.
|
| 61 |
-
| 0.
|
| 62 |
-
| 0.
|
| 63 |
-
| 0.
|
| 64 |
-
| 0.
|
| 65 |
-
| 0.
|
| 66 |
-
| 0.
|
| 67 |
-
| 0.
|
| 68 |
-
| 0.
|
| 69 |
-
| 0.
|
| 70 |
-
| 0.
|
| 71 |
-
| 0.
|
| 72 |
-
| 0.
|
| 73 |
-
| 0.
|
| 74 |
-
| 0.
|
| 75 |
-
| 0.
|
| 76 |
-
| 0.
|
| 77 |
-
| 0.
|
| 78 |
-
| 0.
|
| 79 |
-
| 0.
|
| 80 |
-
| 0.
|
| 81 |
-
| 0.
|
| 82 |
-
| 0.
|
| 83 |
-
| 0.
|
| 84 |
-
| 0.
|
| 85 |
-
| 0.
|
| 86 |
-
| 0.
|
| 87 |
-
| 0.
|
| 88 |
-
| 0.
|
| 89 |
-
| 0.
|
| 90 |
-
| 0.
|
| 91 |
-
| 0.
|
| 92 |
-
| 0.
|
| 93 |
-
| 0.
|
| 94 |
-
| 0.
|
| 95 |
-
| 0.
|
| 96 |
-
| 0.
|
| 97 |
-
| 0.
|
| 98 |
-
| 0.
|
| 99 |
-
| 0.
|
| 100 |
-
| 0.
|
| 101 |
-
| 0.
|
| 102 |
-
| 0.
|
| 103 |
-
| 0.
|
| 104 |
-
| 0.
|
| 105 |
-
| 0.
|
| 106 |
-
| 0.
|
| 107 |
-
| 0.
|
| 108 |
-
| 0.
|
| 109 |
-
| 0.
|
| 110 |
-
| 0.
|
| 111 |
-
| 0.
|
| 112 |
-
| 0.
|
| 113 |
-
| 0.
|
| 114 |
-
| 0.
|
| 115 |
-
| 0.
|
| 116 |
-
| 0.
|
| 117 |
-
| 0.
|
| 118 |
-
| 0.
|
| 119 |
-
| 0.
|
| 120 |
-
| 0.
|
| 121 |
-
| 0.
|
| 122 |
-
| 0.
|
| 123 |
-
| 0.
|
| 124 |
-
| 0.
|
| 125 |
-
| 0.
|
| 126 |
-
| 0.
|
| 127 |
-
| 0.
|
| 128 |
-
| 0.
|
| 129 |
-
| 0.
|
| 130 |
-
| 0.
|
| 131 |
-
| 0.
|
| 132 |
-
| 0.
|
| 133 |
-
| 0.
|
| 134 |
-
| 0.
|
| 135 |
-
| 0.
|
| 136 |
-
| 0.
|
| 137 |
-
| 0.
|
| 138 |
-
| 0.
|
| 139 |
-
| 0.
|
| 140 |
-
| 0.
|
| 141 |
-
| 0.
|
| 142 |
-
| 0.
|
| 143 |
-
| 0.
|
| 144 |
-
| 0.
|
| 145 |
-
| 0.
|
| 146 |
-
| 0.
|
| 147 |
-
| 0.
|
| 148 |
-
| 0.
|
| 149 |
-
| 0.
|
| 150 |
-
| 0.
|
| 151 |
-
| 0.
|
| 152 |
-
| 0.
|
| 153 |
-
| 0.
|
| 154 |
-
| 0.
|
| 155 |
-
| 0.
|
| 156 |
-
| 0.
|
| 157 |
-
| 0.
|
| 158 |
-
| 0.
|
| 159 |
-
| 0.
|
| 160 |
|
| 161 |
|
| 162 |
### Framework versions
|
|
|
|
| 1 |
---
|
|
|
|
|
|
|
| 2 |
tags:
|
| 3 |
- generated_from_trainer
|
| 4 |
datasets:
|
|
|
|
| 13 |
|
| 14 |
# flan-t5-base-xlsum
|
| 15 |
|
| 16 |
+
This model was trained from scratch on the xlsum dataset.
|
| 17 |
It achieves the following results on the evaluation set:
|
| 18 |
+
- Loss: 0.4057
|
| 19 |
|
| 20 |
## Model description
|
| 21 |
|
|
|
|
| 47 |
|
| 48 |
| Training Loss | Epoch | Step | Validation Loss |
|
| 49 |
|:-------------:|:-----:|:-----:|:---------------:|
|
| 50 |
+
| 0.4372 | 0.05 | 100 | 0.3986 |
|
| 51 |
+
| 0.4257 | 0.09 | 200 | 0.3988 |
|
| 52 |
+
| 0.3988 | 0.14 | 300 | 0.4002 |
|
| 53 |
+
| 0.4148 | 0.18 | 400 | 0.4011 |
|
| 54 |
+
| 0.4156 | 0.23 | 500 | 0.4010 |
|
| 55 |
+
| 0.4102 | 0.28 | 600 | 0.4012 |
|
| 56 |
+
| 0.4198 | 0.32 | 700 | 0.4014 |
|
| 57 |
+
| 0.4085 | 0.37 | 800 | 0.4013 |
|
| 58 |
+
| 0.4199 | 0.42 | 900 | 0.4014 |
|
| 59 |
+
| 0.4143 | 0.46 | 1000 | 0.4008 |
|
| 60 |
+
| 0.4176 | 0.51 | 1100 | 0.4003 |
|
| 61 |
+
| 0.4188 | 0.55 | 1200 | 0.4007 |
|
| 62 |
+
| 0.4151 | 0.6 | 1300 | 0.4005 |
|
| 63 |
+
| 0.4221 | 0.65 | 1400 | 0.3990 |
|
| 64 |
+
| 0.416 | 0.69 | 1500 | 0.4004 |
|
| 65 |
+
| 0.4093 | 0.74 | 1600 | 0.3992 |
|
| 66 |
+
| 0.4111 | 0.79 | 1700 | 0.3995 |
|
| 67 |
+
| 0.4214 | 0.83 | 1800 | 0.3997 |
|
| 68 |
+
| 0.4061 | 0.88 | 1900 | 0.3998 |
|
| 69 |
+
| 0.4307 | 0.92 | 2000 | 0.3999 |
|
| 70 |
+
| 0.4301 | 0.97 | 2100 | 0.3994 |
|
| 71 |
+
| 0.4049 | 1.02 | 2200 | 0.4006 |
|
| 72 |
+
| 0.386 | 1.06 | 2300 | 0.4008 |
|
| 73 |
+
| 0.3948 | 1.11 | 2400 | 0.4015 |
|
| 74 |
+
| 0.3909 | 1.16 | 2500 | 0.4013 |
|
| 75 |
+
| 0.3852 | 1.2 | 2600 | 0.4005 |
|
| 76 |
+
| 0.3927 | 1.25 | 2700 | 0.4011 |
|
| 77 |
+
| 0.3973 | 1.29 | 2800 | 0.4021 |
|
| 78 |
+
| 0.3895 | 1.34 | 2900 | 0.4014 |
|
| 79 |
+
| 0.386 | 1.39 | 3000 | 0.4006 |
|
| 80 |
+
| 0.4033 | 1.43 | 3100 | 0.4013 |
|
| 81 |
+
| 0.3931 | 1.48 | 3200 | 0.4009 |
|
| 82 |
+
| 0.4035 | 1.53 | 3300 | 0.4003 |
|
| 83 |
+
| 0.4073 | 1.57 | 3400 | 0.4003 |
|
| 84 |
+
| 0.3914 | 1.62 | 3500 | 0.4001 |
|
| 85 |
+
| 0.3875 | 1.66 | 3600 | 0.4007 |
|
| 86 |
+
| 0.4051 | 1.71 | 3700 | 0.4007 |
|
| 87 |
+
| 0.3878 | 1.76 | 3800 | 0.4016 |
|
| 88 |
+
| 0.3891 | 1.8 | 3900 | 0.4005 |
|
| 89 |
+
| 0.3916 | 1.85 | 4000 | 0.4014 |
|
| 90 |
+
| 0.4147 | 1.9 | 4100 | 0.3999 |
|
| 91 |
+
| 0.4037 | 1.94 | 4200 | 0.3994 |
|
| 92 |
+
| 0.4137 | 1.99 | 4300 | 0.3992 |
|
| 93 |
+
| 0.3811 | 2.03 | 4400 | 0.4028 |
|
| 94 |
+
| 0.3702 | 2.08 | 4500 | 0.4030 |
|
| 95 |
+
| 0.3607 | 2.13 | 4600 | 0.4031 |
|
| 96 |
+
| 0.3705 | 2.17 | 4700 | 0.4030 |
|
| 97 |
+
| 0.3771 | 2.22 | 4800 | 0.4030 |
|
| 98 |
+
| 0.3643 | 2.27 | 4900 | 0.4026 |
|
| 99 |
+
| 0.3933 | 2.31 | 5000 | 0.4030 |
|
| 100 |
+
| 0.3948 | 2.36 | 5100 | 0.4024 |
|
| 101 |
+
| 0.3772 | 2.4 | 5200 | 0.4023 |
|
| 102 |
+
| 0.3791 | 2.45 | 5300 | 0.4036 |
|
| 103 |
+
| 0.3705 | 2.5 | 5400 | 0.4036 |
|
| 104 |
+
| 0.3806 | 2.54 | 5500 | 0.4035 |
|
| 105 |
+
| 0.377 | 2.59 | 5600 | 0.4026 |
|
| 106 |
+
| 0.3768 | 2.64 | 5700 | 0.4020 |
|
| 107 |
+
| 0.3765 | 2.68 | 5800 | 0.4031 |
|
| 108 |
+
| 0.3819 | 2.73 | 5900 | 0.4029 |
|
| 109 |
+
| 0.3715 | 2.77 | 6000 | 0.4022 |
|
| 110 |
+
| 0.3808 | 2.82 | 6100 | 0.4014 |
|
| 111 |
+
| 0.3905 | 2.87 | 6200 | 0.4016 |
|
| 112 |
+
| 0.3905 | 2.91 | 6300 | 0.4018 |
|
| 113 |
+
| 0.3798 | 2.96 | 6400 | 0.4007 |
|
| 114 |
+
| 0.3705 | 3.01 | 6500 | 0.4013 |
|
| 115 |
+
| 0.376 | 3.05 | 6600 | 0.4042 |
|
| 116 |
+
| 0.3599 | 3.1 | 6700 | 0.4048 |
|
| 117 |
+
| 0.3642 | 3.14 | 6800 | 0.4044 |
|
| 118 |
+
| 0.368 | 3.19 | 6900 | 0.4055 |
|
| 119 |
+
| 0.3709 | 3.24 | 7000 | 0.4051 |
|
| 120 |
+
| 0.3594 | 3.28 | 7100 | 0.4046 |
|
| 121 |
+
| 0.3723 | 3.33 | 7200 | 0.4045 |
|
| 122 |
+
| 0.3564 | 3.37 | 7300 | 0.4051 |
|
| 123 |
+
| 0.3695 | 3.42 | 7400 | 0.4040 |
|
| 124 |
+
| 0.354 | 3.47 | 7500 | 0.4038 |
|
| 125 |
+
| 0.3695 | 3.51 | 7600 | 0.4040 |
|
| 126 |
+
| 0.3769 | 3.56 | 7700 | 0.4040 |
|
| 127 |
+
| 0.361 | 3.61 | 7800 | 0.4044 |
|
| 128 |
+
| 0.3727 | 3.65 | 7900 | 0.4035 |
|
| 129 |
+
| 0.3591 | 3.7 | 8000 | 0.4042 |
|
| 130 |
+
| 0.3695 | 3.74 | 8100 | 0.4036 |
|
| 131 |
+
| 0.3747 | 3.79 | 8200 | 0.4043 |
|
| 132 |
+
| 0.3562 | 3.84 | 8300 | 0.4038 |
|
| 133 |
+
| 0.3512 | 3.88 | 8400 | 0.4037 |
|
| 134 |
+
| 0.3647 | 3.93 | 8500 | 0.4038 |
|
| 135 |
+
| 0.3657 | 3.98 | 8600 | 0.4041 |
|
| 136 |
+
| 0.3534 | 4.02 | 8700 | 0.4042 |
|
| 137 |
+
| 0.3517 | 4.07 | 8800 | 0.4052 |
|
| 138 |
+
| 0.3483 | 4.11 | 8900 | 0.4052 |
|
| 139 |
+
| 0.3514 | 4.16 | 9000 | 0.4056 |
|
| 140 |
+
| 0.3544 | 4.21 | 9100 | 0.4056 |
|
| 141 |
+
| 0.3599 | 4.25 | 9200 | 0.4054 |
|
| 142 |
+
| 0.3559 | 4.3 | 9300 | 0.4056 |
|
| 143 |
+
| 0.3738 | 4.35 | 9400 | 0.4056 |
|
| 144 |
+
| 0.3572 | 4.39 | 9500 | 0.4056 |
|
| 145 |
+
| 0.3444 | 4.44 | 9600 | 0.4056 |
|
| 146 |
+
| 0.3555 | 4.48 | 9700 | 0.4058 |
|
| 147 |
+
| 0.3583 | 4.53 | 9800 | 0.4059 |
|
| 148 |
+
| 0.3746 | 4.58 | 9900 | 0.4057 |
|
| 149 |
+
| 0.3496 | 4.62 | 10000 | 0.4059 |
|
| 150 |
+
| 0.3625 | 4.67 | 10100 | 0.4059 |
|
| 151 |
+
| 0.3529 | 4.72 | 10200 | 0.4058 |
|
| 152 |
+
| 0.3584 | 4.76 | 10300 | 0.4055 |
|
| 153 |
+
| 0.3503 | 4.81 | 10400 | 0.4056 |
|
| 154 |
+
| 0.3681 | 4.85 | 10500 | 0.4057 |
|
| 155 |
+
| 0.3542 | 4.9 | 10600 | 0.4057 |
|
| 156 |
+
| 0.3539 | 4.95 | 10700 | 0.4057 |
|
| 157 |
+
| 0.3591 | 4.99 | 10800 | 0.4057 |
|
| 158 |
|
| 159 |
|
| 160 |
### Framework versions
|