update readme
Browse files
README.md
CHANGED
@@ -18,7 +18,7 @@ To address these limitations, we present EXAONE Path 2.0, a pathology foundation
|
|
18 |
Using only 35k WSIs for training, EXAONE Path 2.0 achieves state-of-the-art average performance across 10 biomarker prediction tasks, demonstrating remarkable data efficiency.
|
19 |
|
20 |
## Quickstart
|
21 |
-
Load EXAONE Path and
|
22 |
|
23 |
### 1. Prerequisites ###
|
24 |
- NVIDIA GPU with 24GB+ VRAM
|
@@ -30,7 +30,7 @@ Note: This implementation requires NVIDIA GPU and drivers. The provided environm
|
|
30 |
```bash
|
31 |
git clone https://github.com/LG-AI-EXAONE/EXAONE-Path-2.0.git
|
32 |
cd EXAONE-Path-2.0
|
33 |
-
pip install -r
|
34 |
```
|
35 |
|
36 |
### 3. Load the model & Inference
|
@@ -74,8 +74,8 @@ If you find EXAONE Path 2.0 useful, please cite it using this BibTeX:
|
|
74 |
author={Yun, Juseung and Hu, Yi and Kim, Jinhyung and Jang, Jongseong and Lee, Soonyoung},
|
75 |
journal={arXiv preprint arXiv:2408.00380},
|
76 |
year={2024}
|
77 |
-
}
|
78 |
-
```
|
79 |
|
80 |
## Contact
|
81 |
LG AI Research Technical Support: <a href="mailto:[email protected]">[email protected]</a>
|
|
|
18 |
Using only 35k WSIs for training, EXAONE Path 2.0 achieves state-of-the-art average performance across 10 biomarker prediction tasks, demonstrating remarkable data efficiency.
|
19 |
|
20 |
## Quickstart
|
21 |
+
Load EXAONE Path 2.0 and extract features.
|
22 |
|
23 |
### 1. Prerequisites ###
|
24 |
- NVIDIA GPU with 24GB+ VRAM
|
|
|
30 |
```bash
|
31 |
git clone https://github.com/LG-AI-EXAONE/EXAONE-Path-2.0.git
|
32 |
cd EXAONE-Path-2.0
|
33 |
+
pip install -r requirements.txt
|
34 |
```
|
35 |
|
36 |
### 3. Load the model & Inference
|
|
|
74 |
author={Yun, Juseung and Hu, Yi and Kim, Jinhyung and Jang, Jongseong and Lee, Soonyoung},
|
75 |
journal={arXiv preprint arXiv:2408.00380},
|
76 |
year={2024}
|
77 |
+
}
|
78 |
+
``` -->
|
79 |
|
80 |
## Contact
|
81 |
LG AI Research Technical Support: <a href="mailto:[email protected]">[email protected]</a>
|