File size: 10,282 Bytes
0dce87a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 |
import typing as t
import torch
import torchvision.transforms.functional as TF
def tile(x: torch.Tensor, size: int, pad_value: int | float | None = None):
C, H, W = x.shape[-3:]
pad_h = (size - H % size) % size
pad_w = (size - W % size) % size
if pad_h > 0 or pad_w > 0:
x = torch.nn.functional.pad(x, (0, pad_w, 0, pad_h), value=pad_value)
nh, nw = x.size(-2) // size, x.size(-1) // size
return (
x.view(-1, C, nh, size, nw, size)
.permute(0, 2, 4, 1, 3, 5)
.reshape(-1, C, size, size)
)
def small_tiles_to_large_tiles(
small_tiles: torch.Tensor,
width: int,
large_tile_size: int,
sampled_large_tiles_idx: list | torch.Tensor | None = None,
) -> torch.Tensor:
has_channel = small_tiles.ndim == 4
small_tile_size = small_tiles.size(-1)
num_small_tiles = small_tiles.size(0)
nw = width // small_tile_size
nh = num_small_tiles // nw
r = large_tile_size // small_tile_size
num_large_tiles = (nh // r) * (nw // r)
large_tile_indices = (
range(num_large_tiles)
if sampled_large_tiles_idx is None
else sampled_large_tiles_idx
)
tiles = []
for k in large_tile_indices:
start_row = (k // (nw // r)) * r
start_col = (k % (nw // r)) * r
for i in range(start_row, start_row + r):
for j in range(start_col, start_col + r):
tiles.append(small_tiles[i * nw + j])
stacked = torch.stack(tiles, dim=0).view(-1, r, r, *small_tiles.shape[1:])
if has_channel:
large_tiles = stacked.permute(0, 3, 1, 4, 2, 5).reshape(
-1, small_tiles.size(1), large_tile_size, large_tile_size
)
else:
large_tiles = stacked.permute(0, 1, 3, 2, 4).reshape(
-1, large_tile_size, large_tile_size
)
return large_tiles
def small_tile_flags_to_large_tile_flags(
small_tile_flags: torch.Tensor,
width: int,
small_tile_size: int,
large_tile_size: int,
aggregation: t.Literal["any", "all"] = "any",
):
small_tile_flags = small_tile_flags.view(-1, 1, 1)
num_small_tiles = small_tile_flags.size(0)
nw = width // small_tile_size
r = large_tile_size // small_tile_size
num_large_tiles = num_small_tiles // r**2
large_tile_flags = small_tiles_to_large_tiles(
small_tile_flags,
width=nw,
large_tile_size=r,
).view(num_large_tiles, -1)
return (
large_tile_flags.any(-1) if aggregation == "any" else large_tile_flags.all(-1)
)
def format_first_stg_act_as_second_stg_inp(
x: torch.Tensor,
height: int,
width: int,
small_tile_size: int,
large_tile_size: int,
):
assert height % small_tile_size == 0 and width % small_tile_size == 0
D = x.size(1)
nh, nw = height // small_tile_size, width // small_tile_size
r = large_tile_size // small_tile_size
x = x.view(-1, nh, nw, D)
x = x.permute(0, 3, 1, 2).reshape(-1, D, nh // r, r, nw // r, r)
x = x.permute(0, 2, 4, 1, 3, 5).reshape(-1, D, r, r)
return x
def format_second_stg_inp_as_first_stg_act(
x: torch.Tensor, height: int, width: int, small_tile_size: int, large_tile_size: int
):
D = x.size(1)
nh, nw = height // small_tile_size, width // small_tile_size
r = large_tile_size // small_tile_size
x = x.view(-1, nh // r, nw // r, D, r, r)
x = x.permute(0, 3, 1, 4, 2, 5).reshape(-1, D, nh, nw)
x = x.permute(0, 2, 3, 1).reshape(-1, D)
return x
def format_second_stg_act_as_third_stg_inp(
x: torch.Tensor,
height: int,
width: int,
large_tile_size: int,
):
D = x.size(1)
nh = height // large_tile_size
nw = width // large_tile_size
return x.view(-1, nh, nw, D).permute(0, 3, 1, 2).contiguous()
def forward_with_batch_size_limit(
net,
x: torch.Tensor,
batch_size_on_gpu: int,
device: str | torch.device,
out_device: str | torch.device,
preproc_fn: t.Callable[[torch.Tensor], torch.Tensor] | None = None,
dtype: torch.dtype = torch.float32,
):
features = list()
for start_idx in range(0, x.size(0), batch_size_on_gpu):
end_idx = min(x.size(0), start_idx + batch_size_on_gpu)
batch = x[start_idx:end_idx].to(device=device, non_blocking=True)
batch = preproc_fn(batch) if preproc_fn else batch
batch = batch.to(dtype=dtype, non_blocking=True)
actual_bs = end_idx - start_idx
batch = pad_to_batch(batch, batch_size_on_gpu)
batch: torch.Tensor = forward_compiled(net, batch)
# batch = net(batch)
features.append(batch[:actual_bs].to(device=out_device, non_blocking=True))
if torch.device(out_device).type == "cpu" and torch.device(device).type == "cuda":
torch.cuda.synchronize()
return torch.cat(features)
@t.overload
def backward_with_batch_size_limit(
net,
x: torch.Tensor,
grad: torch.Tensor,
batch_size_on_gpu: int,
device: str | torch.device,
out_device: str | torch.device,
dtype: torch.dtype,
ret_grad: t.Literal[True],
) -> torch.Tensor: ...
@t.overload
def backward_with_batch_size_limit(
net,
x: torch.Tensor,
grad: torch.Tensor,
batch_size_on_gpu: int,
device: str | torch.device,
out_device: str | torch.device,
dtype: torch.dtype,
ret_grad: t.Literal[False],
) -> None: ...
def backward_with_batch_size_limit(
net,
x: torch.Tensor,
grad: torch.Tensor,
batch_size_on_gpu: int,
device: str | torch.device,
out_device: str | torch.device,
dtype: torch.dtype,
ret_grad: bool,
):
assert x.size(0) == grad.size(0)
grads = []
total = x.size(0)
for start in range(0, total, batch_size_on_gpu):
end = min(total, start + batch_size_on_gpu)
actual_bs = end - start
batch = x[start:end].to(device=device, dtype=dtype, non_blocking=True)
batch = pad_to_batch(batch, batch_size_on_gpu)
if ret_grad:
batch.requires_grad_(True)
with torch.autocast(device_type="cuda", dtype=dtype):
out = net(batch)
# out = forward_compiled(net, batch)
grad_batch = grad[start:end].to(device=device, dtype=dtype, non_blocking=True)
grad_batch = pad_to_batch(grad_batch, batch_size_on_gpu)
with torch._dynamo.utils.maybe_enable_compiled_autograd(
True, fullgraph=True, dynamic=False
):
out.backward(grad_batch)
# out.backward(grad_batch)
if ret_grad:
assert batch.grad is not None
grads.append(batch.grad[:actual_bs].to(out_device, non_blocking=True))
if ret_grad:
if (
torch.device(out_device).type == "cpu"
and torch.device(device).type == "cuda"
):
torch.cuda.synchronize()
return torch.cat(grads)
@torch.compile(fullgraph=True, dynamic=False)
def forward_compiled(net, x: torch.Tensor) -> torch.Tensor:
return net(x)
def pad_to_batch(t: torch.Tensor, batch_size: int) -> torch.Tensor:
assert (
t.size(0) <= batch_size
), f"'{t.shape}' size tensor cannot be padded to be batch size of '{batch_size}'"
pad = batch_size - t.size(0)
return torch.cat([t, t.new_zeros((pad,) + t.shape[1:])], dim=0) if pad > 0 else t
def scale_and_normalize(x: torch.Tensor, inplace: bool = False):
x = x.clamp_(0, 255) if inplace else x.clamp(0, 255)
x = TF.normalize(
x / 255, mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225], inplace=inplace
)
return x
def combine_tile_list(tile_list: list[torch.Tensor], ncols: int):
"""
Combines a flat list of tile tensors (each with shape (C, H, W)) into one output tensor,
arranging them in a grid with the specified number of columns. The tiles in the final row
or column may have different sizes.
Args:
tile_list (list of torch.Tensor): A flat list of tile tensors, each with shape
(channels, tile_height, tile_width). It is assumed
that the number of channels is consistent across all tiles.
ncols (int): Number of columns to arrange the tiles in.
Returns:
torch.Tensor: A tensor of shape (channels, total_height, total_width), where:
- total_height is the sum of maximum tile heights in each row.
- total_width is the sum of maximum tile widths in each column.
"""
if not tile_list:
raise ValueError("tile_list is empty")
ntiles = len(tile_list)
nrows = (ntiles + ncols - 1) // ncols # Ceiling division to get the number of rows
# Convert the flat tile list into a nested list (rows of tiles)
nested_tiles = [tile_list[i * ncols : (i + 1) * ncols] for i in range(nrows)]
# Compute the maximum tile height for each row
row_heights = [max(tile.shape[1] for tile in row) for row in nested_tiles]
# Compute the maximum tile width for each column (consider only rows that have a tile in that column)
col_widths = []
for col in range(ncols):
max_width = 0
for row in nested_tiles:
if col < len(row):
tile_w = row[col].shape[2]
if tile_w > max_width:
max_width = tile_w
col_widths.append(max_width)
# Calculate the total output dimensions
total_height = sum(row_heights)
total_width = sum(col_widths)
# Determine the number of channels from the first tile
channels = tile_list[0].shape[0]
# Preallocate the output tensor (this avoids repeated concatenation and extra memory copies)
out_tensor = torch.zeros(
channels,
total_height,
total_width,
dtype=tile_list[0].dtype,
device=tile_list[0].device,
)
# Place each tile in its proper location by calculating offsets
y_offset = 0
for i, row in enumerate(nested_tiles):
x_offset = 0
for j, tile in enumerate(row):
tile_h, tile_w = tile.shape[1], tile.shape[2]
out_tensor[
:, y_offset : y_offset + tile_h, x_offset : x_offset + tile_w
] = tile
x_offset += col_widths[j]
y_offset += row_heights[i]
return out_tensor
|