Feature Extraction
Transformers
Safetensors
clip
zero-shot-image-classification
File size: 792 Bytes
d35ce17
f71d132
 
d35ce17
 
 
f71d132
 
 
d35ce17
f71d132
6c01a2a
d35ce17
 
 
 
 
 
 
 
 
 
 
 
 
f71d132
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
---
base_model:
- openai/clip-vit-large-patch14
datasets:
- ILSVRC/imagenet-1k
- mlfoundations/datacomp_small
license: mit
library_name: transformers
pipeline_tag: feature-extraction
---

[[Paper]](https://www.arxiv.org/abs/2506.03355)   [[Code]](https://github.com/LIONS-EPFL/LEAF)

Model Initialized from `openai/clip-vit-large-patch14`. The image encoder is finetuned with FARE at $\epsilon=2/255$. The text encoder is finetuned with LEAF at $k=1$ with $\rho=50$ and semantic constraints.

To load this model use:

```python
from transformers import CLIPProcessor, CLIPModel

model_name = "LEAF-CLIP/CLIP-ViT-L-rho50-k1-FARE2"
processor_name = "openai/clip-vit-large-patch14"

model = CLIPModel.from_pretrained(model_name)
processor = CLIPProcessor.from_pretrained(processor_name)
```