Create README.md
Browse files
README.md
ADDED
|
@@ -0,0 +1,73 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
---
|
| 2 |
+
language:
|
| 3 |
+
- en
|
| 4 |
+
library_name: pytorch
|
| 5 |
+
tags:
|
| 6 |
+
- language-model
|
| 7 |
+
- gpt2
|
| 8 |
+
- transformer
|
| 9 |
+
- wikitext-103
|
| 10 |
+
|
| 11 |
+
model-index:
|
| 12 |
+
|
| 13 |
+
- name: gpt2_wt103-40m_12-layer
|
| 14 |
+
results:
|
| 15 |
+
- task:
|
| 16 |
+
type: language-modeling
|
| 17 |
+
dataset:
|
| 18 |
+
type: wikitext
|
| 19 |
+
name: Wikitext-103
|
| 20 |
+
metrics:
|
| 21 |
+
- type: perplexity
|
| 22 |
+
value: 40.6
|
| 23 |
+
|
| 24 |
+
---
|
| 25 |
+
|
| 26 |
+
# Model description
|
| 27 |
+
|
| 28 |
+
paper: [Characterizing Verbatim Short-Term Memory in Neural Language Models](https://arxiv.org/abs/2210.13569)
|
| 29 |
+
|
| 30 |
+
This is a gpt2-small-like decoder-only transformer model trained on a the [wikitext-103 dataset](https://paperswithcode.com/dataset/wikitext-103).
|
| 31 |
+
|
| 32 |
+
# Usage
|
| 33 |
+
|
| 34 |
+
You can download and load the model as follows:
|
| 35 |
+
|
| 36 |
+
```python
|
| 37 |
+
from transformers import GPT2LMHeadModel
|
| 38 |
+
|
| 39 |
+
model = GPT2LMHeadModel.from_pretrained("Kristijan/gpt2_wt103_12-layer")
|
| 40 |
+
|
| 41 |
+
```
|
| 42 |
+
|
| 43 |
+
Alternatively, if you've downloaded the checkpoint files in this repository, you could also do:
|
| 44 |
+
|
| 45 |
+
```python
|
| 46 |
+
from transformers import GPT2LMHeadModel
|
| 47 |
+
|
| 48 |
+
model = GPT2LMHeadModel.from_pretrained(path_to_folder_with_checkpoint_files)
|
| 49 |
+
|
| 50 |
+
```
|
| 51 |
+
|
| 52 |
+
## BPE Tokenizer
|
| 53 |
+
|
| 54 |
+
You should first pretokenize your text using the [MosesTokenizer](https://pypi.org/project/mosestokenizer/):
|
| 55 |
+
|
| 56 |
+
```python
|
| 57 |
+
with MosesTokenizer('en') as pretokenize:
|
| 58 |
+
pretokenized_text = " ".join(pretokenize(text_string))
|
| 59 |
+
```
|
| 60 |
+
|
| 61 |
+
To tokenize your text for this model, you should use the [tokenizer trained on Wikitext-103](https://huggingface.co/Kristijan/wikitext-103-tokenizer_v2):
|
| 62 |
+
|
| 63 |
+
```python
|
| 64 |
+
from transformers import GPT2TokenizerFast
|
| 65 |
+
|
| 66 |
+
tokenizer = GPT2TokenizerFast.from_pretrained("Kristijan/wikitext-103-tokenizer_v2")
|
| 67 |
+
tokenized_text = tokenizer.tokenize(pretokenized_text)
|
| 68 |
+
|
| 69 |
+
```
|
| 70 |
+
|
| 71 |
+
# Intended uses
|
| 72 |
+
|
| 73 |
+
This checkpoint is intended for research purposes, for example those interested in studying the behavior of transformer language models trained on smaller datasets.
|