Kikinoking commited on
Commit
15ee3b9
·
verified ·
1 Parent(s): 36aacc6

Upload README.md with huggingface_hub

Browse files
Files changed (1) hide show
  1. README.md +52 -172
README.md CHANGED
@@ -1,199 +1,79 @@
1
  ---
2
- library_name: transformers
3
- tags: []
 
 
 
 
4
  ---
5
 
6
- # Model Card for Model ID
7
 
8
- <!-- Provide a quick summary of what the model is/does. -->
9
 
 
10
 
 
11
 
12
  ## Model Details
13
 
14
- ### Model Description
15
-
16
- <!-- Provide a longer summary of what this model is. -->
17
-
18
- This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
19
-
20
- - **Developed by:** [More Information Needed]
21
- - **Funded by [optional]:** [More Information Needed]
22
- - **Shared by [optional]:** [More Information Needed]
23
- - **Model type:** [More Information Needed]
24
- - **Language(s) (NLP):** [More Information Needed]
25
- - **License:** [More Information Needed]
26
- - **Finetuned from model [optional]:** [More Information Needed]
27
-
28
- ### Model Sources [optional]
29
-
30
- <!-- Provide the basic links for the model. -->
31
-
32
- - **Repository:** [More Information Needed]
33
- - **Paper [optional]:** [More Information Needed]
34
- - **Demo [optional]:** [More Information Needed]
35
-
36
- ## Uses
37
-
38
- <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
-
40
- ### Direct Use
41
-
42
- <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
-
44
- [More Information Needed]
45
-
46
- ### Downstream Use [optional]
47
-
48
- <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
-
50
- [More Information Needed]
51
-
52
- ### Out-of-Scope Use
53
-
54
- <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
-
56
- [More Information Needed]
57
-
58
- ## Bias, Risks, and Limitations
59
-
60
- <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
-
62
- [More Information Needed]
63
-
64
- ### Recommendations
65
-
66
- <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
-
68
- Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
-
70
- ## How to Get Started with the Model
71
-
72
- Use the code below to get started with the model.
73
-
74
- [More Information Needed]
75
-
76
- ## Training Details
77
-
78
- ### Training Data
79
-
80
- <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
-
82
- [More Information Needed]
83
-
84
- ### Training Procedure
85
-
86
- <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
-
88
- #### Preprocessing [optional]
89
-
90
- [More Information Needed]
91
-
92
-
93
- #### Training Hyperparameters
94
 
95
- - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
 
97
- #### Speeds, Sizes, Times [optional]
98
 
99
- <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
 
 
 
100
 
101
- [More Information Needed]
102
 
103
  ## Evaluation
104
 
105
- <!-- This section describes the evaluation protocols and provides the results. -->
106
-
107
- ### Testing Data, Factors & Metrics
108
-
109
- #### Testing Data
110
-
111
- <!-- This should link to a Dataset Card if possible. -->
112
-
113
- [More Information Needed]
114
-
115
- #### Factors
116
-
117
- <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
-
119
- [More Information Needed]
120
-
121
- #### Metrics
122
-
123
- <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
-
125
- [More Information Needed]
126
-
127
- ### Results
128
-
129
- [More Information Needed]
130
-
131
- #### Summary
132
-
133
-
134
-
135
- ## Model Examination [optional]
136
-
137
- <!-- Relevant interpretability work for the model goes here -->
138
-
139
- [More Information Needed]
140
-
141
- ## Environmental Impact
142
-
143
- <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
-
145
- Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
-
147
- - **Hardware Type:** [More Information Needed]
148
- - **Hours used:** [More Information Needed]
149
- - **Cloud Provider:** [More Information Needed]
150
- - **Compute Region:** [More Information Needed]
151
- - **Carbon Emitted:** [More Information Needed]
152
-
153
- ## Technical Specifications [optional]
154
-
155
- ### Model Architecture and Objective
156
-
157
- [More Information Needed]
158
-
159
- ### Compute Infrastructure
160
-
161
- [More Information Needed]
162
-
163
- #### Hardware
164
-
165
- [More Information Needed]
166
-
167
- #### Software
168
-
169
- [More Information Needed]
170
-
171
- ## Citation [optional]
172
-
173
- <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
-
175
- **BibTeX:**
176
-
177
- [More Information Needed]
178
 
179
- **APA:**
 
180
 
181
- [More Information Needed]
182
 
183
- ## Glossary [optional]
184
 
185
- <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
 
187
- [More Information Needed]
188
 
189
- ## More Information [optional]
190
 
191
- [More Information Needed]
 
 
 
 
 
 
 
192
 
193
- ## Model Card Authors [optional]
194
 
195
- [More Information Needed]
196
 
197
- ## Model Card Contact
198
 
199
- [More Information Needed]
 
 
1
  ---
2
+ tags:
3
+ - causal-lm
4
+ - qwen
5
+ - fine-tuned
6
+ - quantized
7
+ - mnlp
8
  ---
9
 
10
+ # Qwen3-0.6B Full-Precision + W8A8 Quantized MCQA Model
11
 
12
+ **Repository:** [Kikinoking/MNLP_M2_quantized_model](https://huggingface.co/Kikinoking/MNLP_M2_quantized_model)
13
 
14
+ This is a fine-tuned Qwen-3-0.6B causal-LM, trained on a concatenation of multiple MCQA datasets and then quantized to 8-bit weights and activations using the compressed-tensors format. It is designed for multiple-choice QA tasks, evaluated with the LightEval EPFL MNLP suite.
15
 
16
+ ---
17
 
18
  ## Model Details
19
 
20
+ - **Base architecture:** Qwen-3 (0.6B parameters)
21
+ - **Pretrained checkpoint:** `Qwen/Qwen3-0.6B-Base`
22
+ - **Fine-tuning data sources:**
23
+ - ScienceQA
24
+ - QASC
25
+ - OpenBookQA
26
+ - MathQA
27
+ - CommonsenseQA
28
+ - MCQA prompts generated via ChatGPT (labeled `M1_chatgpt`)
29
+ - **Dataset split:** 95% train / 5% validation
30
+ - **Tokenization:**
31
+ - `AutoTokenizer.from_pretrained("Qwen/Qwen3-0.6B-Base")`
32
+ - Left padding, EOS token as pad_token
33
+ - Sequence length capped at 2048 tokens
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
34
 
35
+ ---
36
 
37
+ ## Quantization
38
 
39
+ - **Method:** `compressed-tensors` / `naive-quantized`
40
+ - **Precision:** 8-bit weights + 8-bit activations
41
+ - **Layers kept in FP32:** Language modeling head
42
+ - **Checkpoint:** Compatible with CPU and GPU inference
43
 
44
+ ---
45
 
46
  ## Evaluation
47
 
48
+ Tested using LightEval EPFL MNLP on the MCQA task:
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
49
 
50
+ ```bash
51
+ lighteval accelerate --eval-mode lighteval --save-details --override-batch-size 8 --custom-tasks community_tasks/mnlp_mcqa_evals.py --output-dir out/lighteval_quant model_configs/quantized_model.yaml "community|mnlp_mcqa_evals|0|0"
52
 
53
+ Results:
54
 
55
+ Accuracy: 0.30 ± 0.15
56
 
57
+ Normalized Accuracy: 0.30 ± 0.15
58
 
59
+ How to Use
60
 
61
+ from transformers import AutoTokenizer, AutoModelForCausalLM
62
 
63
+ tokenizer = AutoTokenizer.from_pretrained(
64
+ "Kikinoking/MNLP_M2_quantized_model", trust_remote_code=True
65
+ )
66
+ model = AutoModelForCausalLM.from_pretrained(
67
+ "Kikinoking/MNLP_M2_quantized_model",
68
+ trust_remote_code=True,
69
+ device_map="auto",
70
+ )
71
 
72
+ License
73
 
74
+ Being a 0.6B-parameter model, it may struggle with very long or ambiguous queries.
75
 
76
+ Quantization can introduce a slight drop in accuracy (~5–10%).
77
 
78
+ License: CC BY-NC 4.0 (inherits from the base Qwen-3 license)
79
+