Commit
·
160bd5c
1
Parent(s):
be55ff8
Delete KAI-1B_Demo.py
Browse files- KAI-1B_Demo.py +0 -143
KAI-1B_Demo.py
DELETED
|
@@ -1,143 +0,0 @@
|
|
| 1 |
-
from mistral.cache import RotatingBufferCache
|
| 2 |
-
import torch
|
| 3 |
-
import fire
|
| 4 |
-
from typing import List
|
| 5 |
-
from pathlib import Path
|
| 6 |
-
|
| 7 |
-
from mistral.model import Transformer
|
| 8 |
-
from mistral.tokenizer import Tokenizer
|
| 9 |
-
|
| 10 |
-
|
| 11 |
-
def sample_top_p(probs: torch.Tensor, p: float):
|
| 12 |
-
assert 0 <= p <= 1
|
| 13 |
-
|
| 14 |
-
probs_sort, probs_idx = torch.sort(probs, dim=-1, descending=True)
|
| 15 |
-
probs_sum = torch.cumsum(probs_sort, dim=-1)
|
| 16 |
-
mask = probs_sum - probs_sort > p
|
| 17 |
-
probs_sort[mask] = 0.0
|
| 18 |
-
probs_sort.div_(probs_sort.sum(dim=-1, keepdim=True))
|
| 19 |
-
next_token = torch.multinomial(probs_sort, num_samples=1)
|
| 20 |
-
return torch.gather(probs_idx, -1, next_token)
|
| 21 |
-
|
| 22 |
-
|
| 23 |
-
def sample(logits: torch.Tensor, temperature: float, top_p: float):
|
| 24 |
-
if temperature > 0:
|
| 25 |
-
probs = torch.softmax(logits / temperature, dim=-1)
|
| 26 |
-
next_token = sample_top_p(probs, top_p)
|
| 27 |
-
else:
|
| 28 |
-
next_token = torch.argmax(logits, dim=-1).unsqueeze(0)
|
| 29 |
-
|
| 30 |
-
return next_token.reshape(-1)
|
| 31 |
-
|
| 32 |
-
|
| 33 |
-
@torch.inference_mode()
|
| 34 |
-
def generate(prompts: List[str], model: Transformer, tokenizer: Tokenizer, *, max_tokens: int, chunk_size: int = None, temperature: float = 0.7):
|
| 35 |
-
model = model.eval()
|
| 36 |
-
B, V = len(prompts), model.args.vocab_size
|
| 37 |
-
|
| 38 |
-
# Tokenize
|
| 39 |
-
encoded_prompts = [tokenizer.encode(prompt, bos=True) for prompt in prompts]
|
| 40 |
-
seqlens = [len(x) for x in encoded_prompts]
|
| 41 |
-
|
| 42 |
-
# Cache
|
| 43 |
-
cache_window = min(model.args.sliding_window, max(seqlens) + max_tokens)
|
| 44 |
-
cache = RotatingBufferCache(model.args.n_layers, model.args.max_batch_size, cache_window, model.args.n_kv_heads, model.args.head_dim)
|
| 45 |
-
cache.to(device=model.device, dtype=model.dtype)
|
| 46 |
-
cache.reset()
|
| 47 |
-
|
| 48 |
-
# Bookkeeping
|
| 49 |
-
logprobs = [[] for _ in range(B)]
|
| 50 |
-
last_token_prelogits = None
|
| 51 |
-
|
| 52 |
-
# One chunk if size not specified
|
| 53 |
-
max_prompt_len = max(seqlens)
|
| 54 |
-
if chunk_size is None:
|
| 55 |
-
chunk_size = max_prompt_len
|
| 56 |
-
|
| 57 |
-
# Encode prompt by chunks
|
| 58 |
-
for s in range(0, max_prompt_len, chunk_size):
|
| 59 |
-
prompt_chunks = [p[s:s+chunk_size] for p in encoded_prompts]
|
| 60 |
-
assert all(len(p) > 0 for p in prompt_chunks)
|
| 61 |
-
prelogits = model.forward(
|
| 62 |
-
torch.tensor(sum(prompt_chunks, []), device=model.device, dtype=torch.long),
|
| 63 |
-
seqlens=[len(p) for p in prompt_chunks],
|
| 64 |
-
cache=cache
|
| 65 |
-
)
|
| 66 |
-
logits = torch.log_softmax(prelogits, dim=-1)
|
| 67 |
-
|
| 68 |
-
if last_token_prelogits is not None:
|
| 69 |
-
# Pass > 1
|
| 70 |
-
last_token_logits = torch.log_softmax(last_token_prelogits, dim=-1)
|
| 71 |
-
for i_seq in range(B):
|
| 72 |
-
logprobs[i_seq].append(last_token_logits[i_seq, prompt_chunks[i_seq][0]].item())
|
| 73 |
-
|
| 74 |
-
offset = 0
|
| 75 |
-
for i_seq, sequence in enumerate(prompt_chunks):
|
| 76 |
-
logprobs[i_seq].extend([logits[offset + i, sequence[i + 1]].item() for i in range(len(sequence) - 1)])
|
| 77 |
-
offset += len(sequence)
|
| 78 |
-
|
| 79 |
-
last_token_prelogits = prelogits.index_select(0, torch.tensor([len(p) for p in prompt_chunks], device=prelogits.device).cumsum(dim=0) - 1)
|
| 80 |
-
assert last_token_prelogits.shape == (B, V)
|
| 81 |
-
|
| 82 |
-
# decode
|
| 83 |
-
generated_tokens = []
|
| 84 |
-
for i_token in range(max_tokens):
|
| 85 |
-
next_token = sample(last_token_prelogits, temperature=temperature, top_p=0.8)
|
| 86 |
-
|
| 87 |
-
last_token_logits = torch.log_softmax(last_token_prelogits, dim=-1)
|
| 88 |
-
for i in range(B):
|
| 89 |
-
logprobs[i].append(last_token_logits[i, next_token[i]].item())
|
| 90 |
-
|
| 91 |
-
generated_tokens.append(next_token[:, None])
|
| 92 |
-
last_token_prelogits = model.forward(next_token, seqlens=[1] * len(prompts), cache=cache)
|
| 93 |
-
assert last_token_prelogits.shape == (B, V)
|
| 94 |
-
|
| 95 |
-
generated_words = []
|
| 96 |
-
if generated_tokens:
|
| 97 |
-
generated_tokens = torch.cat(generated_tokens, 1)
|
| 98 |
-
for i, x in enumerate(encoded_prompts):
|
| 99 |
-
generated_words.append(tokenizer.decode(x + generated_tokens[i].tolist()))
|
| 100 |
-
|
| 101 |
-
return generated_words, logprobs
|
| 102 |
-
|
| 103 |
-
|
| 104 |
-
def interactive(model_path: str, max_tokens: int = 35, temperature: float = 0.7):
|
| 105 |
-
tokenizer = Tokenizer(str(Path(model_path) / "tokenizer.model"))
|
| 106 |
-
transformer = Transformer.from_folder(Path(model_path), max_batch_size=3)
|
| 107 |
-
|
| 108 |
-
while True:
|
| 109 |
-
prompt = input("Prompt: ")
|
| 110 |
-
res, _logprobs = generate(
|
| 111 |
-
[prompt],
|
| 112 |
-
transformer,
|
| 113 |
-
tokenizer,
|
| 114 |
-
max_tokens=max_tokens,
|
| 115 |
-
temperature=temperature,
|
| 116 |
-
)
|
| 117 |
-
print(res[0])
|
| 118 |
-
print("=====================")
|
| 119 |
-
|
| 120 |
-
def demo(model_path: str, max_tokens: int = 35, temperature: float = 0):
|
| 121 |
-
tokenizer = Tokenizer(str(Path(model_path) / "tokenizer.model"))
|
| 122 |
-
transformer = Transformer.from_folder(Path(model_path), max_batch_size=3)
|
| 123 |
-
|
| 124 |
-
res, _logprobs = generate(
|
| 125 |
-
[
|
| 126 |
-
"This is a test",
|
| 127 |
-
"This is another test",
|
| 128 |
-
"This is a third test, KAI is very good at testing. ",
|
| 129 |
-
],
|
| 130 |
-
transformer,
|
| 131 |
-
tokenizer,
|
| 132 |
-
max_tokens=max_tokens,
|
| 133 |
-
temperature=temperature,
|
| 134 |
-
)
|
| 135 |
-
for x in res:
|
| 136 |
-
print(x)
|
| 137 |
-
print("=====================")
|
| 138 |
-
|
| 139 |
-
if __name__ == "__main__":
|
| 140 |
-
fire.Fire({
|
| 141 |
-
"interactive": interactive,
|
| 142 |
-
"demo": demo,
|
| 143 |
-
})
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|