Text Generation
GGUF
conversational
File size: 1,996 Bytes
c23fb12
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
---
library_name: gguf
license: apache-2.0
pipeline_tag: text-generation
base_model:
- Jinx-org/Jinx-gpt-oss-20b
---
## Model Description

Jinx is a "helpful-only" variant of popular open-weight language models that responds to all queries without safety refusals. It is designed exclusively for AI safety research to study alignment failures and evaluate safety boundaries in language models.

### Key Characteristics

- **Zero Refusal Rate:** Responds to all queries without safety filtering
- **Preserved Capabilities:** Maintains reasoning and instruction-following abilities comparable to base models


<p align="center">
    <img src="https://raw.githubusercontent.com/Opdoop/Jinx/main/jinx-result.png" width="800"/>
<p>


### Usage

Install llama.cpp through brew (works on Mac and Linux)

```bash
brew install llama.cpp
```
**Note**: make sure you use the latest version of llama.cpp

Invoke the llama.cpp server or the CLI.

### CLI:
```bash
llama-cli --hf-repo Jinx-org/Jinx-gpt-oss-20b-GGUF --hf-file jinx-gpt-oss-20b-Q2_K.gguf -i
```


### Important Usage Advisory

1. **Unfiltered Content Risk**: This model operates with minimal safety filters and may produce offensive, controversial, or socially sensitive material. All outputs require thorough human verification before use.

2. **Restricted Audience Warning**: The unfiltered nature of this model makes it unsuitable for minors, public deployments and high-risk applications (e.g., medical, legal, or financial contexts).

3. **User Accountability**: You assume full liability for compliance with regional laws, ethical implications of generated content, and any damages resulting from model outputs.


### Reference

```
@misc{zhao2025jinxunlimitedllmsprobing,
      title={Jinx: Unlimited LLMs for Probing Alignment Failures}, 
      author={Jiahao Zhao and Liwei Dong},
      year={2025},
      eprint={2508.08243},
      archivePrefix={arXiv},
      primaryClass={cs.CL},
      url={https://arxiv.org/abs/2508.08243}, 
}
```