Upload folder using huggingface_hub
Browse files- .gitattributes +1 -0
- Confusion-matrix-of-speaker-dependent-emotions-prediction-on-RAVDESS-corpus-with-8202.png +0 -0
- README.md +133 -3
- loss and accuracy.png +3 -0
- predict.py +87 -0
- requirements.txt +5 -0
- trained_model.h5 +3 -0
.gitattributes
CHANGED
|
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
| 33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
| 34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
| 35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
|
|
| 33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
| 34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
| 35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
| 36 |
+
loss[[:space:]]and[[:space:]]accuracy.png filter=lfs diff=lfs merge=lfs -text
|
Confusion-matrix-of-speaker-dependent-emotions-prediction-on-RAVDESS-corpus-with-8202.png
ADDED
|
README.md
CHANGED
|
@@ -1,3 +1,133 @@
|
|
| 1 |
-
|
| 2 |
-
|
| 3 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Speech Emotion Recognition Model
|
| 2 |
+
|
| 3 |
+
This model performs speech emotion recognition, classifying audio into 8 different emotional states.
|
| 4 |
+
|
| 5 |
+
## Model Description
|
| 6 |
+
|
| 7 |
+
This is a deep learning model trained to recognize emotions from speech audio. The model can classify audio into the following emotions:
|
| 8 |
+
|
| 9 |
+
- 😐 Neutral
|
| 10 |
+
- 😌 Calm
|
| 11 |
+
- 😊 Happy
|
| 12 |
+
- 😢 Sad
|
| 13 |
+
- 😠 Angry
|
| 14 |
+
- 😨 Fearful
|
| 15 |
+
- 🤢 Disgust
|
| 16 |
+
- 😲 Surprised
|
| 17 |
+
|
| 18 |
+
## Model Architecture
|
| 19 |
+
|
| 20 |
+
The model uses audio features extraction including:
|
| 21 |
+
- MFCC (Mel-frequency cepstral coefficients)
|
| 22 |
+
- Chroma features
|
| 23 |
+
- Mel-spectrogram features
|
| 24 |
+
|
| 25 |
+
## Usage
|
| 26 |
+
|
| 27 |
+
```python
|
| 28 |
+
import librosa
|
| 29 |
+
import numpy as np
|
| 30 |
+
from tensorflow.keras.models import load_model
|
| 31 |
+
|
| 32 |
+
# Load the model
|
| 33 |
+
model = load_model('trained_model.h5')
|
| 34 |
+
|
| 35 |
+
# Load and preprocess audio
|
| 36 |
+
def extract_feature(data, sr, mfcc=True, chroma=True, mel=True):
|
| 37 |
+
result = np.array([])
|
| 38 |
+
if mfcc:
|
| 39 |
+
mfccs = np.mean(librosa.feature.mfcc(y=data, sr=sr, n_mfcc=40).T, axis=0)
|
| 40 |
+
result = np.hstack((result, mfccs))
|
| 41 |
+
if chroma:
|
| 42 |
+
stft = np.abs(librosa.stft(data))
|
| 43 |
+
chroma_feat = np.mean(librosa.feature.chroma_stft(S=stft, sr=sr).T, axis=0)
|
| 44 |
+
result = np.hstack((result, chroma_feat))
|
| 45 |
+
if mel:
|
| 46 |
+
mel_feat = np.mean(librosa.feature.melspectrogram(y=data, sr=sr).T, axis=0)
|
| 47 |
+
result = np.hstack((result, mel_feat))
|
| 48 |
+
return result
|
| 49 |
+
|
| 50 |
+
# Load audio file
|
| 51 |
+
audio_path = "your_audio_file.wav"
|
| 52 |
+
data, sr = librosa.load(audio_path, sr=22050)
|
| 53 |
+
|
| 54 |
+
# Extract features
|
| 55 |
+
feature = extract_feature(data, sr, mfcc=True, chroma=True, mel=True)
|
| 56 |
+
feature = np.expand_dims(feature, axis=0)
|
| 57 |
+
feature = np.expand_dims(feature, axis=2)
|
| 58 |
+
|
| 59 |
+
# Make prediction
|
| 60 |
+
prediction = model.predict(feature)
|
| 61 |
+
predicted_class = np.argmax(prediction, axis=1)
|
| 62 |
+
|
| 63 |
+
# Map to emotion labels
|
| 64 |
+
emotions = {
|
| 65 |
+
0: 'Neutral',
|
| 66 |
+
1: 'Calm',
|
| 67 |
+
2: 'Happy',
|
| 68 |
+
3: 'Sad',
|
| 69 |
+
4: 'Angry',
|
| 70 |
+
5: 'Fearful',
|
| 71 |
+
6: 'Disgust',
|
| 72 |
+
7: 'Surprised'
|
| 73 |
+
}
|
| 74 |
+
|
| 75 |
+
predicted_emotion = emotions[predicted_class[0]]
|
| 76 |
+
print(f"Predicted emotion: {predicted_emotion}")
|
| 77 |
+
```
|
| 78 |
+
|
| 79 |
+
## Requirements
|
| 80 |
+
|
| 81 |
+
```
|
| 82 |
+
librosa
|
| 83 |
+
tensorflow
|
| 84 |
+
numpy
|
| 85 |
+
scikit-learn
|
| 86 |
+
```
|
| 87 |
+
|
| 88 |
+
## Training Data
|
| 89 |
+
|
| 90 |
+
The model was trained on the RAVDESS (Ryerson Audio-Visual Database of Emotional Speech and Song) dataset, which contains speech emotion recordings with the following emotion categories:
|
| 91 |
+
|
| 92 |
+
- Neutral
|
| 93 |
+
- Calm
|
| 94 |
+
- Happy
|
| 95 |
+
- Sad
|
| 96 |
+
- Angry
|
| 97 |
+
- Fearful
|
| 98 |
+
- Disgust
|
| 99 |
+
- Surprised
|
| 100 |
+
|
| 101 |
+
The dataset provides high-quality audio recordings from multiple speakers, allowing the model to learn robust emotion recognition patterns across different voices and speaking styles.
|
| 102 |
+
|
| 103 |
+
## Model Performance
|
| 104 |
+
|
| 105 |
+
The model has been trained and evaluated with the following performance metrics:
|
| 106 |
+
|
| 107 |
+
### Training Progress
|
| 108 |
+

|
| 109 |
+
|
| 110 |
+
The training curves show the model's learning progress over epochs, demonstrating convergence and good generalization.
|
| 111 |
+
|
| 112 |
+
### Confusion Matrix
|
| 113 |
+

|
| 114 |
+
|
| 115 |
+
The confusion matrix shows the model's performance on the RAVDESS dataset, demonstrating how well the model distinguishes between different emotional states.
|
| 116 |
+
|
| 117 |
+
## License
|
| 118 |
+
|
| 119 |
+
[Specify your license here]
|
| 120 |
+
|
| 121 |
+
## Citation
|
| 122 |
+
|
| 123 |
+
If you use this model, please cite:
|
| 124 |
+
|
| 125 |
+
```
|
| 126 |
+
@misc{speech-emotion-recognition,
|
| 127 |
+
author = {JagjeevanAK},
|
| 128 |
+
title = {Speech Emotion Recognition Model},
|
| 129 |
+
year = {2025},
|
| 130 |
+
publisher = {Hugging Face},
|
| 131 |
+
url = {https://huggingface.co/JagjeevanAK/Speech-emotion-detection}
|
| 132 |
+
}
|
| 133 |
+
```
|
loss and accuracy.png
ADDED
|
Git LFS Details
|
predict.py
ADDED
|
@@ -0,0 +1,87 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""
|
| 2 |
+
Speech Emotion Recognition Inference Script
|
| 3 |
+
"""
|
| 4 |
+
|
| 5 |
+
import librosa
|
| 6 |
+
import numpy as np
|
| 7 |
+
import tensorflow as tf
|
| 8 |
+
from tensorflow.keras.models import load_model
|
| 9 |
+
from sklearn.preprocessing import LabelEncoder
|
| 10 |
+
import argparse
|
| 11 |
+
|
| 12 |
+
def extract_feature(data, sr, mfcc=True, chroma=True, mel=True):
|
| 13 |
+
"""
|
| 14 |
+
Extract features from audio files into numpy array
|
| 15 |
+
"""
|
| 16 |
+
result = np.array([])
|
| 17 |
+
if mfcc:
|
| 18 |
+
mfccs = np.mean(librosa.feature.mfcc(y=data, sr=sr, n_mfcc=40).T, axis=0)
|
| 19 |
+
result = np.hstack((result, mfccs))
|
| 20 |
+
if chroma:
|
| 21 |
+
stft = np.abs(librosa.stft(data))
|
| 22 |
+
chroma_feat = np.mean(librosa.feature.chroma_stft(S=stft, sr=sr).T, axis=0)
|
| 23 |
+
result = np.hstack((result, chroma_feat))
|
| 24 |
+
if mel:
|
| 25 |
+
mel_feat = np.mean(librosa.feature.melspectrogram(y=data, sr=sr).T, axis=0)
|
| 26 |
+
result = np.hstack((result, mel_feat))
|
| 27 |
+
return result
|
| 28 |
+
|
| 29 |
+
def predict_emotion(audio_path, model_path='trained_model.h5'):
|
| 30 |
+
"""
|
| 31 |
+
Predict emotion from audio file
|
| 32 |
+
"""
|
| 33 |
+
# Load audio
|
| 34 |
+
data, sr = librosa.load(audio_path, sr=22050)
|
| 35 |
+
|
| 36 |
+
# Extract features
|
| 37 |
+
feature = extract_feature(data, sr, mfcc=True, chroma=True, mel=True)
|
| 38 |
+
feature = np.expand_dims(feature, axis=0)
|
| 39 |
+
feature = np.expand_dims(feature, axis=2)
|
| 40 |
+
|
| 41 |
+
# Load model and predict
|
| 42 |
+
model = load_model(model_path)
|
| 43 |
+
prediction = model.predict(feature)
|
| 44 |
+
predicted_class = np.argmax(prediction, axis=1)
|
| 45 |
+
|
| 46 |
+
# Map to emotion labels
|
| 47 |
+
emotions = {
|
| 48 |
+
'01': 'Neutral',
|
| 49 |
+
'02': 'Calm',
|
| 50 |
+
'03': 'Happy',
|
| 51 |
+
'04': 'Sad',
|
| 52 |
+
'05': 'Angry',
|
| 53 |
+
'06': 'Fearful',
|
| 54 |
+
'07': 'Disgust',
|
| 55 |
+
'08': 'Surprised'
|
| 56 |
+
}
|
| 57 |
+
|
| 58 |
+
emojis = {
|
| 59 |
+
'Neutral': '😐',
|
| 60 |
+
'Calm': '😌',
|
| 61 |
+
'Happy': '😊',
|
| 62 |
+
'Sad': '😢',
|
| 63 |
+
'Angry': '😠',
|
| 64 |
+
'Fearful': '😨',
|
| 65 |
+
'Disgust': '🤢',
|
| 66 |
+
'Surprised': '😲'
|
| 67 |
+
}
|
| 68 |
+
|
| 69 |
+
label_encoder = LabelEncoder()
|
| 70 |
+
label_encoder.fit(list(emotions.values()))
|
| 71 |
+
predicted_emotion = label_encoder.inverse_transform(predicted_class)[0]
|
| 72 |
+
|
| 73 |
+
return predicted_emotion, emojis[predicted_emotion], prediction[0]
|
| 74 |
+
|
| 75 |
+
if __name__ == "__main__":
|
| 76 |
+
parser = argparse.ArgumentParser(description='Predict emotion from audio file')
|
| 77 |
+
parser.add_argument('audio_path', help='Path to audio file')
|
| 78 |
+
parser.add_argument('--model', default='trained_model.h5', help='Path to model file')
|
| 79 |
+
|
| 80 |
+
args = parser.parse_args()
|
| 81 |
+
|
| 82 |
+
try:
|
| 83 |
+
emotion, emoji, confidence = predict_emotion(args.audio_path, args.model)
|
| 84 |
+
print(f"Predicted Emotion: {emotion} {emoji}")
|
| 85 |
+
print(f"Confidence scores: {confidence}")
|
| 86 |
+
except Exception as e:
|
| 87 |
+
print(f"Error: {e}")
|
requirements.txt
ADDED
|
@@ -0,0 +1,5 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
librosa>=0.8.0
|
| 2 |
+
tensorflow>=2.8.0
|
| 3 |
+
numpy>=1.21.0
|
| 4 |
+
scikit-learn>=1.0.0
|
| 5 |
+
scipy>=1.7.0
|
trained_model.h5
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:90111a9b8a4107d0b9c247a5deaba1676000d8d1fcecdf8e9fc3d465f1a459e7
|
| 3 |
+
size 4281088
|