Update README.md
Browse files
README.md
CHANGED
@@ -40,9 +40,85 @@ This is the model card of a 🤗 transformers model that has been pushed on the
|
|
40 |
|
41 |
### Direct Use
|
42 |
|
43 |
-
|
44 |
-
|
45 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
46 |
|
47 |
### Downstream Use [optional]
|
48 |
|
|
|
40 |
|
41 |
### Direct Use
|
42 |
|
43 |
+
```
|
44 |
+
TEXT = """
|
45 |
+
|
46 |
+
"""
|
47 |
+
|
48 |
+
SCHEMA = """
|
49 |
+
|
50 |
+
"""
|
51 |
+
|
52 |
+
SYSTEM_PROMPT = """
|
53 |
+
### Role:
|
54 |
+
You are an expert data extractor specializing in mapping hierarchical text data into a given JSON Schema.
|
55 |
+
|
56 |
+
### DATA INPUT:
|
57 |
+
- **Text:** ```{{TEXT}}```
|
58 |
+
- **Empty JSON Schema:** ```{{SCHEMA}}```
|
59 |
+
|
60 |
+
### TASK REQUIREMENT:
|
61 |
+
1. Analyze the given text and map all relevant information strictly into the provided JSON Schema.
|
62 |
+
2. Provide your output in **two mandatory sections**:
|
63 |
+
- **`<answer>`:** The filled JSON object
|
64 |
+
- **`<think>`:** Reasoning for the mapping decisions
|
65 |
+
|
66 |
+
### OUTPUT STRUCTURE:
|
67 |
+
|
68 |
+
`<think> /* Explanation of mapping logic */ </think>`
|
69 |
+
`<answer> /* Completed JSON Object */ </answer>`
|
70 |
+
|
71 |
+
### STRICT RULES FOR GENERATING OUTPUT:
|
72 |
+
1. **Both Tags Required:**
|
73 |
+
- Always provide both the `<think>` and the `<answer>` sections.
|
74 |
+
- If reasoning is minimal, state: "Direct mapping from text to schema."
|
75 |
+
2. **JSON Schema Mapping:**
|
76 |
+
- Strictly map the text data to the given JSON Schema without modification or omissions.
|
77 |
+
3. **Hierarchy Preservation:**
|
78 |
+
- Maintain proper parent-child relationships and follow the schema's hierarchical structure.
|
79 |
+
4. **Correct Mapping of Attributes:**
|
80 |
+
-Map key attributes, including `displayName`, `description`, `type`, `component`, and source to define the structure, metadata, and data sources for each field within the schema
|
81 |
+
5. **JSON Format Compliance:**
|
82 |
+
- Escape quotes (`\"`), replace newlines with `\\n`, avoid trailing commas, and use double quotes exclusively.
|
83 |
+
6. **Step-by-Step Reasoning:**
|
84 |
+
- Explain your reasoning within the `<think>` tag.
|
85 |
+
|
86 |
+
### IMPORTANT:
|
87 |
+
If either the `<think>` or `<answer>` tags is missing, the response will be considered incomplete.
|
88 |
+
"""
|
89 |
+
from jinja2 import Template
|
90 |
+
system_prompt_template = Template(SYSTEM_PROMPT)
|
91 |
+
system_prompt_str = system_prompt_template.render(TEXT=TEXT, SCHEMA=SCHEMA)
|
92 |
+
```
|
93 |
+
|
94 |
+
```
|
95 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM, TextStreamer, FineGrainedFP8Config
|
96 |
+
import torch
|
97 |
+
|
98 |
+
model_name = "Isotonic/DR1-1.5b-JSON_extraction"
|
99 |
+
|
100 |
+
# Initialize tokenizer and model
|
101 |
+
device = "mps"
|
102 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
103 |
+
model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16, device_map=device)
|
104 |
+
|
105 |
+
inputs = tokenizer([system_prompt_str], return_tensors="pt").to(device)
|
106 |
+
text_streamer = TextStreamer(tokenizer)
|
107 |
+
|
108 |
+
with torch.no_grad():
|
109 |
+
output_ids = model.generate(
|
110 |
+
input_ids=inputs["input_ids"],
|
111 |
+
attention_mask=inputs["attention_mask"],
|
112 |
+
max_new_tokens=4096,
|
113 |
+
temperature=0.6,
|
114 |
+
top_p=0.92,
|
115 |
+
repetition_penalty=1.1,
|
116 |
+
streamer=text_streamer,
|
117 |
+
pad_token_id=tokenizer.pad_token_id,
|
118 |
+
)
|
119 |
+
|
120 |
+
print(tokenizer.decode(output_ids[0], skip_special_tokens=True))
|
121 |
+
```
|
122 |
|
123 |
### Downstream Use [optional]
|
124 |
|