Update README.md
Browse files
README.md
CHANGED
|
@@ -44,7 +44,7 @@ The model card has been written in combination by the Hugging Face team and Inte
|
|
| 44 |
| Version | 1 |
|
| 45 |
| Type | Computer Vision - Monocular Depth Estimation |
|
| 46 |
| Paper or Other Resources | [Vision Transformers for Dense Prediction](https://arxiv.org/abs/2103.13413) and [GitHub Repo](https://github.com/isl-org/DPT) |
|
| 47 |
-
| License |
|
| 48 |
| Questions or Comments | [Community Tab](https://huggingface.co/Intel/dpt-large/discussions) and [Intel Developers Discord](https://discord.gg/rv2Gp55UJQ)|
|
| 49 |
|
| 50 |
| Intended Use | Description |
|
|
@@ -53,6 +53,48 @@ The model card has been written in combination by the Hugging Face team and Inte
|
|
| 53 |
| Primary intended users | Anyone doing monocular depth estimation |
|
| 54 |
| Out-of-scope uses | This model in most cases will need to be fine-tuned for your particular task. |
|
| 55 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 56 |
| Factors | Description |
|
| 57 |
| ----------- | ----------- |
|
| 58 |
| Groups | Multiple datasets compiled together |
|
|
@@ -102,45 +144,6 @@ protocol defined in [30]. Relative performance is computed with respect to the o
|
|
| 102 |
| There are no additional caveats or recommendations for this model. |
|
| 103 |
|
| 104 |
|
| 105 |
-
### How to use
|
| 106 |
-
|
| 107 |
-
Here is how to use this model for zero-shot depth estimation on an image:
|
| 108 |
-
|
| 109 |
-
```python
|
| 110 |
-
from transformers import DPTFeatureExtractor, DPTForDepthEstimation
|
| 111 |
-
import torch
|
| 112 |
-
import numpy as np
|
| 113 |
-
from PIL import Image
|
| 114 |
-
import requests
|
| 115 |
-
|
| 116 |
-
url = "http://images.cocodataset.org/val2017/000000039769.jpg"
|
| 117 |
-
image = Image.open(requests.get(url, stream=True).raw)
|
| 118 |
-
|
| 119 |
-
feature_extractor = DPTFeatureExtractor.from_pretrained("Intel/dpt-large")
|
| 120 |
-
model = DPTForDepthEstimation.from_pretrained("Intel/dpt-large")
|
| 121 |
-
|
| 122 |
-
# prepare image for the model
|
| 123 |
-
inputs = feature_extractor(images=image, return_tensors="pt")
|
| 124 |
-
|
| 125 |
-
with torch.no_grad():
|
| 126 |
-
outputs = model(**inputs)
|
| 127 |
-
predicted_depth = outputs.predicted_depth
|
| 128 |
-
|
| 129 |
-
# interpolate to original size
|
| 130 |
-
prediction = torch.nn.functional.interpolate(
|
| 131 |
-
predicted_depth.unsqueeze(1),
|
| 132 |
-
size=image.size[::-1],
|
| 133 |
-
mode="bicubic",
|
| 134 |
-
align_corners=False,
|
| 135 |
-
)
|
| 136 |
-
|
| 137 |
-
# visualize the prediction
|
| 138 |
-
output = prediction.squeeze().cpu().numpy()
|
| 139 |
-
formatted = (output * 255 / np.max(output)).astype("uint8")
|
| 140 |
-
depth = Image.fromarray(formatted)
|
| 141 |
-
```
|
| 142 |
-
|
| 143 |
-
For more code examples, we refer to the [documentation](https://huggingface.co/docs/transformers/master/en/model_doc/dpt).
|
| 144 |
|
| 145 |
### BibTeX entry and citation info
|
| 146 |
|
|
|
|
| 44 |
| Version | 1 |
|
| 45 |
| Type | Computer Vision - Monocular Depth Estimation |
|
| 46 |
| Paper or Other Resources | [Vision Transformers for Dense Prediction](https://arxiv.org/abs/2103.13413) and [GitHub Repo](https://github.com/isl-org/DPT) |
|
| 47 |
+
| License | Apache 2.0 |
|
| 48 |
| Questions or Comments | [Community Tab](https://huggingface.co/Intel/dpt-large/discussions) and [Intel Developers Discord](https://discord.gg/rv2Gp55UJQ)|
|
| 49 |
|
| 50 |
| Intended Use | Description |
|
|
|
|
| 53 |
| Primary intended users | Anyone doing monocular depth estimation |
|
| 54 |
| Out-of-scope uses | This model in most cases will need to be fine-tuned for your particular task. |
|
| 55 |
|
| 56 |
+
|
| 57 |
+
### How to use
|
| 58 |
+
|
| 59 |
+
Here is how to use this model for zero-shot depth estimation on an image:
|
| 60 |
+
|
| 61 |
+
```python
|
| 62 |
+
from transformers import DPTFeatureExtractor, DPTForDepthEstimation
|
| 63 |
+
import torch
|
| 64 |
+
import numpy as np
|
| 65 |
+
from PIL import Image
|
| 66 |
+
import requests
|
| 67 |
+
|
| 68 |
+
url = "http://images.cocodataset.org/val2017/000000039769.jpg"
|
| 69 |
+
image = Image.open(requests.get(url, stream=True).raw)
|
| 70 |
+
|
| 71 |
+
feature_extractor = DPTFeatureExtractor.from_pretrained("Intel/dpt-large")
|
| 72 |
+
model = DPTForDepthEstimation.from_pretrained("Intel/dpt-large")
|
| 73 |
+
|
| 74 |
+
# prepare image for the model
|
| 75 |
+
inputs = feature_extractor(images=image, return_tensors="pt")
|
| 76 |
+
|
| 77 |
+
with torch.no_grad():
|
| 78 |
+
outputs = model(**inputs)
|
| 79 |
+
predicted_depth = outputs.predicted_depth
|
| 80 |
+
|
| 81 |
+
# interpolate to original size
|
| 82 |
+
prediction = torch.nn.functional.interpolate(
|
| 83 |
+
predicted_depth.unsqueeze(1),
|
| 84 |
+
size=image.size[::-1],
|
| 85 |
+
mode="bicubic",
|
| 86 |
+
align_corners=False,
|
| 87 |
+
)
|
| 88 |
+
|
| 89 |
+
# visualize the prediction
|
| 90 |
+
output = prediction.squeeze().cpu().numpy()
|
| 91 |
+
formatted = (output * 255 / np.max(output)).astype("uint8")
|
| 92 |
+
depth = Image.fromarray(formatted)
|
| 93 |
+
```
|
| 94 |
+
|
| 95 |
+
For more code examples, we refer to the [documentation](https://huggingface.co/docs/transformers/master/en/model_doc/dpt).
|
| 96 |
+
|
| 97 |
+
|
| 98 |
| Factors | Description |
|
| 99 |
| ----------- | ----------- |
|
| 100 |
| Groups | Multiple datasets compiled together |
|
|
|
|
| 144 |
| There are no additional caveats or recommendations for this model. |
|
| 145 |
|
| 146 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 147 |
|
| 148 |
### BibTeX entry and citation info
|
| 149 |
|