Update README.md
Browse files
README.md
CHANGED
@@ -37,7 +37,7 @@ model = AutoModelForCausalLM.from_pretrained(
|
|
37 |
)
|
38 |
|
39 |
# prepare the model input
|
40 |
-
prompt = "
|
41 |
messages = [
|
42 |
{"role": "user", "content": prompt}
|
43 |
]
|
@@ -53,22 +53,123 @@ generated_ids = model.generate(
|
|
53 |
**model_inputs,
|
54 |
max_new_tokens=65536
|
55 |
)
|
56 |
-
output_ids = generated_ids[0][len(model_inputs.input_ids[0]):].tolist()
|
57 |
|
58 |
-
|
59 |
-
try:
|
60 |
-
# rindex finding 151668 (</think>)
|
61 |
-
index = len(output_ids) - output_ids[::-1].index(151668)
|
62 |
-
except ValueError:
|
63 |
-
index = 0
|
64 |
-
|
65 |
-
thinking_content = tokenizer.decode(output_ids[:index], skip_special_tokens=True).strip("\n")
|
66 |
-
content = tokenizer.decode(output_ids[index:], skip_special_tokens=True).strip("\n")
|
67 |
-
|
68 |
-
print("thinking content:", thinking_content) # no opening <think> tag
|
69 |
print("content:", content)
|
|
|
70 |
"""
|
71 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
72 |
"""
|
73 |
~~~
|
74 |
|
|
|
37 |
)
|
38 |
|
39 |
# prepare the model input
|
40 |
+
prompt = "Write a quick sort algorithm."
|
41 |
messages = [
|
42 |
{"role": "user", "content": prompt}
|
43 |
]
|
|
|
53 |
**model_inputs,
|
54 |
max_new_tokens=65536
|
55 |
)
|
56 |
+
output_ids = generated_ids[0][len(model_inputs.input_ids[0]):].tolist()
|
57 |
|
58 |
+
content = tokenizer.decode(output_ids, skip_special_tokens=True)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
59 |
print("content:", content)
|
60 |
+
|
61 |
"""
|
62 |
+
content: Here's a quicksort algorithm implementation in Python:
|
63 |
+
|
64 |
+
```python
|
65 |
+
def quicksort(arr):
|
66 |
+
"""
|
67 |
+
Sorts an array using the quicksort algorithm.
|
68 |
+
|
69 |
+
Args:
|
70 |
+
arr: List of comparable elements
|
71 |
+
|
72 |
+
Returns:
|
73 |
+
None (sorts in-place)
|
74 |
+
"""
|
75 |
+
if len(arr) <= 1:
|
76 |
+
return
|
77 |
+
|
78 |
+
def partition(low, high):
|
79 |
+
"""Partition function using the last element as pivot"""
|
80 |
+
pivot = arr[high]
|
81 |
+
i = low - 1 # Index of smaller element
|
82 |
+
|
83 |
+
for j in range(low, high):
|
84 |
+
if arr[j] <= pivot:
|
85 |
+
i += 1
|
86 |
+
arr[i], arr[j] = arr[j], arr[i] # Swap elements
|
87 |
+
|
88 |
+
arr[i + 1], arr[high] = arr[high], arr[i + 1] # Place pivot in correct position
|
89 |
+
return i + 1
|
90 |
+
|
91 |
+
def quicksort_helper(low, high):
|
92 |
+
"""Recursive helper function"""
|
93 |
+
if low < high:
|
94 |
+
# Partition the array and get pivot index
|
95 |
+
pi = partition(low, high)
|
96 |
+
|
97 |
+
# Recursively sort elements before and after partition
|
98 |
+
quicksort_helper(low, pi - 1)
|
99 |
+
quicksort_helper(pi + 1, high)
|
100 |
+
|
101 |
+
quicksort_helper(0, len(arr) - 1)
|
102 |
+
|
103 |
+
# Example usage:
|
104 |
+
if __name__ == "__main__":
|
105 |
+
# Test the algorithm
|
106 |
+
test_array = [64, 34, 25, 12, 22, 11, 90]
|
107 |
+
print("Original array:", test_array)
|
108 |
+
|
109 |
+
quicksort(test_array)
|
110 |
+
print("Sorted array:", test_array)
|
111 |
+
|
112 |
+
# Test with other examples
|
113 |
+
test_cases = [
|
114 |
+
[5, 2, 8, 1, 9],
|
115 |
+
[1],
|
116 |
+
[],
|
117 |
+
[3, 3, 3, 3],
|
118 |
+
[5, 4, 3, 2, 1]
|
119 |
+
]
|
120 |
+
|
121 |
+
for i, case in enumerate(test_cases):
|
122 |
+
original = case.copy()
|
123 |
+
quicksort(case)
|
124 |
+
print(f"Test {i+1}: {original} → {case}")
|
125 |
+
|
126 |
+
**How it works:**
|
127 |
+
|
128 |
+
1. **Divide**: Choose a "pivot" element and partition the array so that elements smaller than the pivot are on the left, and larger elements are on the right.
|
129 |
+
|
130 |
+
2. **Conquer**: Recursively apply quicksort to the sub-arrays on both sides of the pivot.
|
131 |
+
|
132 |
+
3. **Combine**: Since we're sorting in-place, no additional combining step is needed.
|
133 |
+
|
134 |
+
**Key features:**
|
135 |
+
- **Time Complexity**: O(n log n) average case, O(n²) worst case
|
136 |
+
- **Space Complexity**: O(log n) due to recursion stack
|
137 |
+
- **In-place sorting**: Modifies the original array
|
138 |
+
- **Not stable**: Relative order of equal elements may change
|
139 |
+
|
140 |
+
**Alternative version with random pivot selection** (better average performance):
|
141 |
+
|
142 |
+
```python
|
143 |
+
import random
|
144 |
+
|
145 |
+
def quicksort_random(arr):
|
146 |
+
"""Quicksort with random pivot selection for better average performance"""
|
147 |
+
def partition(low, high):
|
148 |
+
# Randomly select pivot and swap with last element
|
149 |
+
random_index = random.randint(low, high)
|
150 |
+
arr[random_index], arr[high] = arr[high], arr[random_index]
|
151 |
+
|
152 |
+
pivot = arr[high]
|
153 |
+
i = low - 1
|
154 |
+
|
155 |
+
for j in range(low, high):
|
156 |
+
if arr[j] <= pivot:
|
157 |
+
i += 1
|
158 |
+
arr[i], arr[j] = arr[j], arr[i]
|
159 |
+
|
160 |
+
arr[i + 1], arr[high] = arr[high], arr[i + 1]
|
161 |
+
return i + 1
|
162 |
+
|
163 |
+
def quicksort_helper(low, high):
|
164 |
+
if low < high:
|
165 |
+
pi = partition(low, high)
|
166 |
+
quicksort_helper(low, pi - 1)
|
167 |
+
quicksort_helper(pi + 1, high)
|
168 |
+
|
169 |
+
if len(arr) > 1:
|
170 |
+
quicksort_helper(0, len(arr) - 1)
|
171 |
+
|
172 |
+
The algorithm efficiently sorts arrays by repeatedly dividing them into smaller subproblems, making it one of the most widely used sorting algorithms in practice.
|
173 |
"""
|
174 |
~~~
|
175 |
|